scholarly journals Stimulation of Ligninolytic Peroxidase Activity by Nitrogen Nutrients in the White Rot Fungus Bjerkandera sp. Strain BOS55

1993 ◽  
Vol 59 (12) ◽  
pp. 4031-4036 ◽  
Author(s):  
Erwin E. J. Kaal ◽  
Ed de Jong ◽  
Jim A. Field
Author(s):  
Teresa Korniłłowicz-Kowalska ◽  
Kamila Rybczyńska-Tkaczyk

AbstractWe used a ligninolytic strain of the white-rot fungus B. adusta CCBAS 930 and its mutants with modified ligninolytic activity to assess their potential to remove of molasses. The analyzed strains have been shown to be able to decolorize 1% or 2% molasses solutions containing brown-colored toxic melanoidins. It was found that the decolorization process was determined by the transition to the stage of production of sporulating aerial mycelium (liquid and agar cultures) coupled with an increase in peroxidase activity, which was accompanied by a decrease in the level of melanoidin, free radicals, and phenolic compounds. Four different peroxidase activities were detected in post-culture liquids, i.e. horseradish-like (HRP-like), manganese-dependent (MnP), lignin (LiP), and versatile (VP) peroxidase activities. The HRP-like peroxidase was characterized by the highest activity. The efficiency of removal of melanoidins from a 1% molasses solution by the parental strain and the mutants was dependent on the culture method. The highest efficiency was noted in immobilized cultures (threefold higher than in the mycelium-free cultures), which was accompanied by stimulation of HRP-like peroxidase activity. Mutant 930-5 was found to be the most effective in the decolorization and decomposition of melanoidin. The HRP-like activity in the immobilized cultures of B. adusta 930-5 was 640-fold higher than in the mycelium-free cultures of the fungus. Moreover, decolorization and biodegradation of melanoidin by B. adusta CCBAS 930 and 930-5 was coupled with detoxification. Graphic abstract


2016 ◽  
Vol 63 (3) ◽  
Author(s):  
Magdalena Jaszek ◽  
Justyna Miłek ◽  
Jerzy Żuchowski ◽  
Dawid Stefaniuk ◽  
Monika Prendecka

The effect of supplementation of medium with rapeseed meal (RM) on production of biotechnologically important enzymes was investigated in submerged cultures of the white rot fungus Cerrena unicolor. The addition of RM (3.5% w/v) distinctly stimulated the activities of laccase, chitinase, and β-glucosidase. As compared to the control, the activities of chitinase, β-glucosidase, and laccase in the RM supplemented cultures were up to 4.1, 8.4, and 3.9 times higher, respectively. The results of the spectrophotometric and spectrofluorometric measurements were additionally confirmed by zymographic analysis of the samples. The level of sugars and phenolic compounds as well as the antioxidative ability of fungal preparations were also determined. The results obtained indicate that the submerged liquid fermentation of rapeseed meal can be proposed as an inexpensive and very effective method for biotechnological production of chitinase, β-glucosidase, and laccase by C. unicolor.


CERNE ◽  
2016 ◽  
Vol 22 (3) ◽  
pp. 223-232 ◽  
Author(s):  
Banyat Cherdchim ◽  
Jareeya Satansat

ABSTRACT Ethylene stimulation increases the rubber latex yield of live rubberwood (Hevea brasiliensis). Lumber samples from ethylene treated rubberwood (TRW) and from untreated rubberwood (URW) were compared mainly for their resistance to fungi, differences in the chemical composition between TRW and URW, and the antifungal activities of their aqueous extracts. The TRW had significantly higher lignin and extractives contents than the URW, but the TRW had comparatively poor resistance to fungal rotting. The white rot fungus Ganoderma lucidum and the brown rot fungus Gloeophyllum striantum caused in vitro significantly higher mass loss in TRW than in URW. This might be related to the phenolic compounds 2,4-ditert-butylphenol and 4-hydroxy-3,5- dimethoxy-benzaldehyde. The aqueous wood extracts strongly inhibited growth of G. lucidum, with lesser effects on the other fungi tested. Caffeine was detected in the TRW, but not the URW. However, the caffeine degraded so quickly that it had no effect on the 6 and 12 weeks fungal resistances of wood samples.


2014 ◽  
Vol 174 (2) ◽  
pp. 644-656 ◽  
Author(s):  
Magdalena Jaszek ◽  
Katarzyna Kos ◽  
Anna Matuszewska ◽  
Marcin Grąz ◽  
Dawid Stefaniuk ◽  
...  

2012 ◽  
Vol 3 (1) ◽  
pp. 20-21
Author(s):  
A.Sangeetha A.Sangeetha ◽  
◽  
K.Thanigai K.Thanigai ◽  
Narasimhamurthy Narasimhamurthy ◽  
S.K.Nath S.K.Nath

2020 ◽  
Vol 93 (9) ◽  
pp. 289-292
Author(s):  
Yumi SHIMIZU ◽  
Shuma SATHO ◽  
Taro NAKAJIMA ◽  
Hiroaki KOUZAI ◽  
Kiminori SHIMIZU

2018 ◽  
Vol 69 (1) ◽  
pp. 38-44
Author(s):  
Nicoleta Mirela Marin ◽  
Olga Tiron ◽  
Luoana Florentina Pascu ◽  
Mihaela Costache ◽  
Mihai Nita Lazar ◽  
...  

This study investigates the synergistic effects of ion exchange and biodegradation methods to remove the Acid Blue 193 also called Gryfalan Navy Blue RL (GNB) dye from wastewater. Ion exchange studies were performed using a strongly basic anion exchange resin Amberlite IRA 400. The equilibrium was characterized by a kinetic and thermodynamic points of view, establishing that the sorption of the GNB dye was subject to the Freundlich isotherm model with R2 = 0.8710. Experimental results showed that the activated resin can removed up to 93.4% when the concentration of dye solution is 5.62�10-2 mM. The biodegradation of the GNB was induced by laccase, an enzyme isolated from white-rot fungus. It was also analyzed the role of pH and dye concentration on GNB biodegradation, so 5�10-2 mM dye had a maximum discoloration efficiency of 82.9% at pH of 4. The laccase showed a very fast and robust activity reaching in a few minutes a Km value of 2.2�10-1mM. In addition, increasing the GNB concentration up to 8�10-1 mM did not triggered a substrat inhibition effect on the laccase activity. Overall, in this study we proposed a mixt physicochemical and biological approach to enhance the GNB removal and biodegradability from the wastewaters and subsequently the environment.


Sign in / Sign up

Export Citation Format

Share Document