scholarly journals Spontaneous deletion mutants of the Lactococcus lactis temperate bacteriophage BK5-T and localization of the BK5-T attP site.

1995 ◽  
Vol 61 (11) ◽  
pp. 4105-4109 ◽  
Author(s):  
J D Boyce ◽  
B E Davidson ◽  
A J Hillier
2013 ◽  
Vol 94 (12) ◽  
pp. 2814-2818 ◽  
Author(s):  
Clara Roces ◽  
Udo Wegmann ◽  
Ana B. Campelo ◽  
Pilar García ◽  
Ana Rodríguez ◽  
...  

The temperate bacteriophage TP712 was unable to plaque on Lactococcus lactis ΔftsH lacking the membrane protease FtsH and complementation in trans restored the WT phenotype. Absence of ftsH did not hinder phage adsorption, phage DNA delivery or activation of the lytic cycle. Thin sections revealed that TP712 virions appeared to be correctly assembled inside the ΔftsH host, but were not released. These virions were infective, demonstrating that a functional host FtsH is required by TP712 to proceed effectively with lysis of the host.


2004 ◽  
Vol 186 (4) ◽  
pp. 1147-1157 ◽  
Author(s):  
Rasmus Larsen ◽  
Girbe Buist ◽  
Oscar P. Kuipers ◽  
Jan Kok

ABSTRACT The DNA binding proteins ArgR and AhrC are essential for regulation of arginine metabolism in Escherichia coli and Bacillus subtilis, respectively. A unique property of these regulators is that they form hexameric protein complexes, mediating repression of arginine biosynthetic pathways as well as activation of arginine catabolic pathways. The gltS-argE operon of Lactococcus lactis encodes a putative glutamate or arginine transport protein and acetylornithine deacetylase, which catalyzes an important step in the arginine biosynthesis pathway. By random integration knockout screening we found that derepression mutants had ISS1 integrations in, among others, argR and ahrC. Single as well as double regulator deletion mutants were constructed from Lactococcus lactis subsp. cremoris MG1363. The three arginine biosynthetic operons argCJDBF, argGH, and gltS-argE were shown to be repressed by the products of argR and ahrC. Furthermore, the arginine catabolic arcABD1C1C2TD2 operon was activated by the product of ahrC but not by that of argR. Expression from the promoter of the argCJDBF operon reached similar levels in the single mutants and in the double mutant, suggesting that the regulators are interdependent and not able to complement each other. At the same time they also appear to have different functions, as only AhrC is involved in activation of arginine catabolism. This is the first study where two homologous arginine regulators are shown to be involved in arginine regulation in a prokaryote, representing an unusual mechanism of regulation.


2001 ◽  
Vol 67 (8) ◽  
pp. 3564-3576 ◽  
Author(s):  
Chitladda Mahanivong ◽  
John D. Boyce ◽  
Barrie E. Davidson ◽  
Alan J. Hillier

ABSTRACT The Lactococcus lactis temperate bacteriophage BK5-T is one of twelve type phages that define L. lactis phage species. This paper describes the nucleotide sequence and analysis of a 21-kbp region of the BK5-T genome and completes the nucleotide sequence of the genome of this phage. The 40,003-nucleotide linear genome encodes 63 open reading frames. Sequence runoff experiments showed that the cohesive ends of the BK5-T genome contained a 12-bp 3′ single-stranded overhang with the sequence 5′-CACACACATAGG-3′. Two major BK5-T structural proteins, of approximately 30 and 20 kDa, were identified, and N-terminal sequence analysis determined that they were encoded by orf7 and orf12, respectively. A 169-bp fragment containing a 37-bp direct repeat and several smaller repeat sequences conferred resistance to BK5-T infection when introduced in trans to the host cell and is likely a part of the BK5-T origin of replication (ori).


2021 ◽  
Author(s):  
José Miguel Miquelão Santos ◽  
Gabriel António Amaro Monteiro ◽  
Duarte Miguel de França Teixeira dos Prazeres ◽  
Sofia de Oliveira Dias Duarte

Abstract Lactococcus lactis strains are promising cell factories and delivery vehicles of plasmid DNA and recombinant protein for therapeutic applications. However, the limited yields of recombinant molecules obtained with these bacteria limits their wide applicability. Genome engineering of this host may solve the problem. However, the current genome editing toolbox available for L. lactis is either too laborious or incapable of large edits, limiting the scope of strain editing experiments. In this work, the basis for a one-plasmid CRISPR-Cas9 based genome editing plasmid was developed and tested. The new plasmid (pTCas9dO) adapted from the pKCcas9dO plasmid was used to delete 657 bp of the lactococcal nuclease nth of L. lactis subsp. lactis LMG19460, with the aim of improving yield and quality of plasmid DNA replicated in this strain. Although deletion mutants were successfully generated, plasmid curing was unsuccessful. Thus, further modifications are required before the plasmid is truly applicable for genome editing experiments. Unexpectedly, the generated deletion mutants generated a roughly 40% decrease in plasmid yield alongside with a decrease in the quality of produced pDNA.


1993 ◽  
Vol 70 (06) ◽  
pp. 1053-1057 ◽  
Author(s):  
Agnès M Journet ◽  
Simin Saffaripour ◽  
Denisa D Wagner

SummaryBiosynthesis of the adhesive glycoprotein von Willebrand factor (vWf) by endothelial cells results in constitutive secretion of small multimers and storage of the largest multimers in rodshaped granules called Weibel-Palade bodies. This pattern is reproduced by expression of pro-vWf in heterologous cells with a regulated pathway of secretion, that store the recombinant protein in similar elongated granules. In these cells, deletion of the vWf prosequence prevents vWf storage. The prosequence, composed of two homologous domains (D1 and D2), actively participates in vWf multimer formation as well. We expressed deletion mutants lacking either the D1 domain (D2vWf) or the D2 domain (D1vWf) in various cell lines to analyze the relative importance of each domain in vWf muitimerization and storage. Both proteins were secreted efficiently without being retained in the endoplasmic reticulum. Despite this, neither multimerized past the dimer stage and they were not stored. We conclude that several segments of the prosequence are jointly involved in vWf muitimerization and storage.


2000 ◽  
Vol 20 (1) ◽  
pp. 135-142
Author(s):  
Philippe Langella ◽  
Yves Le Loir ◽  
Jean-Christophe Piard ◽  
Isabelle Pocquet ◽  
Alexandra Gruss
Keyword(s):  

2002 ◽  
Vol 22 (1-2) ◽  
pp. 199-208 ◽  
Author(s):  
Lucian A Ribeiro ◽  
Vasco Azevedo ◽  
Yves Le Loir ◽  
Daniela Pontes ◽  
Sergio C Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document