scholarly journals Bias in Template-to-Product Ratios in Multitemplate PCR

1998 ◽  
Vol 64 (10) ◽  
pp. 3724-3730 ◽  
Author(s):  
Martin F. Polz ◽  
Colleen M. Cavanaugh

ABSTRACT Bias introduced by the simultaneous amplification of specific genes from complex mixtures of templates remains poorly understood. To explore potential causes and the extent of bias in PCR amplification of 16S ribosomal DNAs (rDNAs), genomic DNAs of two closely and one distantly related bacterial species were mixed and amplified with universal, degenerate primers. Quantification and comparison of template and product ratios showed that there was considerable and reproducible overamplification of specific templates. Variability between replicates also contributed to the observed bias but in a comparatively minor way. Based on these initial observations, template dosage and differences in binding energies of permutations of the degenerate, universal primers were tested as two likely causes of this template-specific bias by using 16S rDNA templates modified by site-directed mutagenesis. When mixtures of mutagenized templates containing AT- and GC-rich priming sites were used, templates containing the GC-rich permutation amplified with higher efficiency, indicating that different primer binding energies may to a large extent be responsible for overamplification. In contrast, gene copy number was found to be an unlikely cause of the observed bias. Similarly, amplification from DNA extracted from a natural community to which different amounts of genomic DNA of a single bacterial species were added did not affect relative product ratios. Bias was reduced considerably by using high template concentrations, by performing fewer cycles, and by mixing replicate reaction preparations.

2003 ◽  
Vol 69 (6) ◽  
pp. 3350-3358 ◽  
Author(s):  
Brett R. Baldwin ◽  
Cindy H. Nakatsu ◽  
Loring Nies

ABSTRACT Our abilities to detect and enumerate pollutant-biodegrading microorganisms in the environment are rapidly advancing with the development of molecular genetic techniques. Techniques based on multiplex and real-time PCR amplification of aromatic oxygenase genes were developed to detect and quantify aromatic catabolic pathways, respectively. PCR primer sets were identified for the large subunits of aromatic oxygenases from alignments of known gene sequences and tested with genetically well-characterized strains. In all, primer sets which allowed amplification of naphthalene dioxygenase, biphenyl dioxygenase, toluene dioxygenase, xylene monooxygenase, phenol monooxygenase, and ring-hydroxylating toluene monooxygenase genes were identified. For each primer set, the length of the observed amplification product matched the length predicted from published sequences, and specificity was confirmed by hybridization. Primer sets were grouped according to the annealing temperature for multiplex PCR permitting simultaneous detection of various genotypes responsible for aromatic hydrocarbon biodegradation. Real-time PCR using SYBR green I was employed with the individual primer sets to determine the gene copy number. Optimum polymerization temperatures for real-time PCR were determined on the basis of the observed melting temperatures of the desired products. When a polymerization temperature of 4 to 5�C below the melting temperature was used, background fluorescence signals were greatly reduced, allowing detection limits of 2 � 102 copies per reaction mixture. Improved in situ microbial characterization will provide more accurate assessment of pollutant biodegradation, enhance studies of the ecology of contaminated sites, and facilitate assessment of the impact of remediation technologies on indigenous microbial populations.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4231-4231 ◽  
Author(s):  
Madoka Kuramitsu ◽  
Tomohiro Morio ◽  
Masatoshi Takagi ◽  
Tsutomu Toki ◽  
Kiminori Terui ◽  
...  

Abstract Abstract 4231 Introduction: Fifty percent of Diamond–Blackfan anemia (DBA) patients possess mutations in ribosomal protein genes. Although several ribosomal protein genes, RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and RPS26, have been reported to be mutated in some DBA patients, including point mutations, nonsense mutations, deletions, splice site mutations, and translocations, other DBA patients appear to have intact ribosomal protein genes. To identify new mutations in ribosomal protein genes from a different aspect, we focused on extensive deletions in these genes, such as mutations involving loss of a whole allele. In this study, we applied quantitative genomic PCR, and successfully developed a convenient method for detecting extensive deletions designated the “DBA gene copy number assay”. Methods: DBA patients should have an intact allele and a mutated allele for the responsible ribosomal protein gene, meaning that they will have an abnormal karyotype (gene copy number of N) if they have an extensive deletion. We attempted to clarify the copy numbers of ribosomal protein genes by the difference in a 1-cycle delay of threshold in a quantitative PCR (q-PCR) assay. To detect extensive deletions, at least 2 sets of gene-specific primers for each DBA responsible gene (RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and RPS26) were prepared. Appropriate primers to fit the setting that the threshold cycle (Ct) of the q-PCR should occur within 1 cycle of the Ct scores of other primer sets were selected. After validation, we identified 6, 3, 4, 3, 3, 6, 9, 3, and 2 specific primer sets for RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and RPS26, respectively. By simply looking at the q-PCR amplification curves by eye, we were easily able to judge the copy numbers of 2N (normal) or N (abnormal) for the ribosomal protein genes. Results: We performed the DBA gene copy number assay for 14 randomly selected undiagnosed patients from the Japanese DBA genomic resource at the University of Hirosaki, who had no mutations by genomic sequencing analyses. For each case, all the DBA responsible genes were confirmed using the diagnostic primers. The results of the DBA gene copy number assays revealed that 5 of the 14 probands (36%) had an extensive deletion in one of the DBA responsible genes. As an interesting case among the 5 positive cases, we confirmed an extensive deletion in the RPS19 gene. The Ct scores for 4 of the 9 primer sets for RPS19 demonstrated a 1-cycle delay, while the scores for the other 5 primer sets were normal. By genomic PCR amplification analyses, we identified a deletion from nt. -1400 to +5757 (7157 nucleotides) in the RPS19 gene. The deleted region included the promoter region, and exons 1, 2, and 3 of the RPS19 gene. The remaining 4 cases were 1 proband with an RPL5 deletion, 1 with an RPL35A deletion and 2 with RPS17 deletions. In particular, the extensive deletions in the RPL5 and RPS17 alleles are the first such cases reported. Discussion: Since it has been difficult to address the loss of a whole allele in DBA, such mutations have not been precisely examined within the DBA responsible genes. Our data suggest that extensive deletions in ribosomal protein genes comprise a significant proportion of DBA cases in Japan. Our novel method could become a useful tool for screening the gene copy numbers of ribosomal protein genes, and for identifying new pathological mutations. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Florian Leese ◽  
Mandy Sander ◽  
Dominik Buchner ◽  
Vasco Elbrecht ◽  
Peter Haase ◽  
...  

AbstractDNA metabarcoding of freshwater communities typically relies on PCR amplification of a fragment of the mitochondrial cytochrome c oxidase (COI) gene with degenerate primers. The advantage of COI is its taxonomic resolution and the availability of an extensive reference database. However, when universal primers are used on environmental DNA (eDNA) isolated from stream water, macroinvertebrate read and OTU numbers are typically “watered down”, i.e. diluted, compared to whole specimen ‘bulk samples’ due to greater co-amplification of abundant non-target taxa such as algae and bacteria. Because stream macroinvertebrate taxa are of prime importance for regulatory biomonitoring, more effective ways to capture their diversity via eDNA isolated from water are important. In this study, we aimed to improve macroinvertebrate assessment from eDNA by minimizing non-target amplification. Therefore, we generated data using universal primers BF2/BR2 throughout 15 months from a German Long-Term Ecological Research (LTER) site, the River Kinzig, to identify most abundant non-target taxa. Based on these data, we designed a new reverse primer (EPTDr2n) with 3’-specificity towards macrozoobenthic taxa and validated its specificity in silico together with universal forward primer fwhF2 using available data from GenBank and BOLD. We then performed in vitro tests using 20 eDNA samples taken in the Kinzig catchment. We found that the percentage of target reads was much higher for the new primer combination compared to two universal macrozoobenthic primer pairs, BF2/BR2 and fwhF2/fwhR2n (>99 % vs. 21.4 % and 41.25 %, respectively). Likewise, number of detected macroinvertebrate taxa was substantially higher (351 vs. 46 and 170, respectively) and exceeded the number of 257 taxa identified by expert taxonomists at nearby sites across two decades of sampling. While few taxa such as Turbellaria were not detected, we show that the optimized primer avoids the dilution problem and thus significantly improves macroinvertebrate detection for bioassessment and -monitoring.


2001 ◽  
Vol 45 (9) ◽  
pp. 2594-2597 ◽  
Author(s):  
Farid Sifaoui ◽  
Michel Arthur ◽  
Louis Rice ◽  
Laurent Gutmann

ABSTRACT The contribution of penicillin-binding protein 5 (PBP 5) to intrinsic and acquired β-lactam resistance was investigated by constructing isogenic strains of Enterococcus faeciumproducing different PBP 5. The pbp5 genes from threeE. faecium clinical isolates (BM4107, D344, and H80721) were cloned into the shuttle vector pAT392 and introduced into E. faecium D344S, a spontaneous derivative of E. faeciumD344 highly susceptible to ampicillin due to deletion ofpbp5 (MIC, 0.03 μg/ml). Immunodetection of PBP5 indicated that cloning of the pbp5 genes into pAT392 resulted in moderate overproduction of PBP 5 in comparison to wild-type strains. This difference may be attributed to a difference in gene copy number. Expression of the pbp5 genes from BM4107 (MIC, 2 μg/ml), D344 (MIC, 24 μg/ml), and H80721 (MIC, 512 μg/ml) in D344S conferred relatively low levels of resistance to ampicillin (MICs, 6, 12, and 20 μg/ml, respectively). A methionine-to-alanine substitution was introduced at position 485 of the BM4107 PBP 5 by site-directed mutagenesis. In contrast to previous hypotheses based on comparison of nonisogenic strains, this substitution resulted in only a 2.5-fold increase in the ampicillin MIC. The reversed-phase high-performance liquid chromatography muropeptide profiles of D344 and D344S were similar, indicating that deletion of pbp5 was not associated with a detectable defect in cell wall synthesis. These results indicate that pbp5 is a nonessential gene responsible for intrinsic resistance to moderate levels of ampicillin and by itself cannot confer high-level resistance.


2008 ◽  
Vol 74 (5) ◽  
pp. 1660-1663 ◽  
Author(s):  
D. Bru ◽  
F. Martin-Laurent ◽  
L. Philippot

ABSTRACT We investigated the effects of internal primer-template mismatches on the efficiency of PCR amplification using the 16S rRNA gene as the model template DNA. We observed that the presence of a single mismatch in the second half of the primer extension sequence can result in an underestimation of up to 1,000-fold of the gene copy number, depending on the primer and position of the mismatch.


2014 ◽  
Vol 86 (22) ◽  
pp. 11028-11032 ◽  
Author(s):  
T. Iglesias González ◽  
M. Espina ◽  
L. M. Sierra ◽  
J. Bettmer ◽  
E. Blanco-González ◽  
...  

Plant Disease ◽  
2006 ◽  
Vol 90 (3) ◽  
pp. 378-378 ◽  
Author(s):  
R. De La Torre-Almaraz ◽  
A. Monsalvo-Reyes ◽  
A. Romero-Rodriguez ◽  
G. R. Argüello-Astorga ◽  
S. Ambriz-Granados

Okra (Abelmoschus esculentus L. Moench), an annual vegetable of African origin, has been cultivated in Mexico for 3 decades. Since 2000, the most important okra-producing areas in the states of Guerrero and Morelos have been affected by a disease causing yellow streak and severe distortion of fruits, a bright yellow mottle, and curling and distortion of leaves. These symptoms and the presence of whiteflies (Bemisia tabaci Gennadius) suggest a viral etiology. Samples of symptomatic plants from three localities, Iguala (Guerrero), Mazatepec, and Xochitepec (Morelos) were collected in November 2004 and tested for the presence of viruses. Single whitefly transmissions, grafting experiments, and experimental inoculation of healthy plants by biolistic delivery of DNA extracts from symptomatic plants consistently induced yellow mottle in okra plants and suggest the presence of a DNA virus. Total DNA extracts from symptomatic plants from field and greenhouse conditions were analyzed by Southern blot hybridization using the coat protein gene of Pepper yellow vein huasteco virus as a probe at low stringency. More than 20 positive samples were subsequently used as templates for polymerase chain reaction (PCR) amplification with the degenerate primers pRepMot and pCPMot (1). PCR products of approximately 600 bp were obtained and directly sequenced. Eight isolates from the three localities (GenBank Accession Nos. AY624016 to AY624023) shared 97 to 100% nucleotide identity but were significantly different from other known begomoviruses. The complete genome A sequence of one isolate from Mazatepec (Ok-M3) was determined using PCR amplification of viral DNA with the degenerate primers PAL1v1978 and PAL1c1960 (3) and four new universal primers, pRepQGR (5′-TCCCTGWATGTTYGGATGGAAATG-3′), pRepQGR-rev (5′-CATTTCCATCCRAACATWCAGGGA-3′), pCp70-MAC (5′-GTC TAGACCTTRCANGGNCCTTCACA-3′), and pCp70-MAC-rev (5′-GAA GGSCCNTGYAAGGTNCAGTC-3′). Partially overlapping PCR products of 0.9, 1.3, and 1.7 kb were cloned into pGEM-T easy vector (Promega, Madison, WI) and sequenced. The 2612-bp DNA-A sequence of Ok-M3 (GenBank Accession No. DQ022611) was compared with sequences available from GenBank using the Clustal alignment method (MegAlign, DNASTAR software, London). The highest sequence identity was obtained with Sida yellow vein virus (SiYVV; Accession No. Y11099), Sida golden mosaic Honduras virus (SiGMHV; Accession No. Y11097), and Chino del tomate virus (CdTV; Accession No. AF101478) that had 85.4, 85.4, and 84.4% nucleotide sequence identity with the Ok-M3 isolate, respectively. Comparative analysis of the intergenic region of the Ok-M3 isolate and its closest relatives revealed that these viruses display different putative Rep-binding sites (iterons): Ok-M3 (GGTACACA), SiYVV (GGAGTA), and SiGMHV (GGKGTA). Current taxonomic criteria for the classification of begomoviruses establishes that less than 89% DNA-A nucleotide sequence identity with the closest relative of a virus is indicative of a separate species (2). Our results indicate that the okra-infecting virus identified in this study is a new begomovirus species, and the provisional name of Okra yellow mottle Mexico virus is proposed. References: (1) J. T. Ascencio-Ibañez et al. Plant Dis. 86:692, 2002. (2) C. Fauquet et al. Arch. Virol. 148:405, 2003. (3) M. Rojas et al. Plant Dis. 77:340, 1993.


Sign in / Sign up

Export Citation Format

Share Document