Two-Component Anti-Staphylococcus aureusLantibiotic Activity Produced by Staphylococcus aureusC55

1998 ◽  
Vol 64 (12) ◽  
pp. 4803-4808 ◽  
Author(s):  
Maduwe A. D. B. Navaratna ◽  
Hans-Georg Sahl ◽  
John R. Tagg

ABSTRACT Staphylococcus aureus C55 was shown to produce bacteriocin activity comprising three distinct peptide components, termed staphylococcins C55α, C55β, and C55γ. The three peptides were purified to homogeneity by a simple four-step purification procedure that consisted of ammonium sulfate precipitation followed by XAD-2 and reversed-phase (C8 and C18) chromatography. The yield following C8 chromatography was about 86%, with a more-than-300-fold increase in specific activity. When combined in approximately equimolar amounts, staphylococcins C55α and C55β acted synergistically to kill S. aureus or Micrococcus luteus but not S. epidermidis strains. The N-terminal amino acid sequences of all three peptides were obtained and staphylococcins C55α and C55β were shown to be lanthionine-containing (lantibiotic) molecules with molecular weights of 3,339 and 2,993, respectively. The C55γ peptide did not appear to be a lantibiotic, nor did it augment the inhibitory activities of staphylococcin C55α and/or C55β. Plasmids of 2.5 and 32.0 kb are present in strain C55, and following growth of this strain at elevated temperature (42°C), a large proportion of the progeny failed to produce strong bacteriocin activity and also lost the 32.0-kb plasmid. Protoplast transformation of these bacteria with purified 32-kb plasmid DNA regenerates the ability to produce the strong bacteriocin activity.

1987 ◽  
Vol 113 (2) ◽  
pp. 213-221 ◽  
Author(s):  
L. J. Leversha ◽  
D. M. Robertson ◽  
F. L. de Vos ◽  
F. J. Morgan ◽  
M. T. W. Hearn ◽  
...  

ABSTRACT Two forms of inhibin with molecular weights of 65 000 and 30 000 (65 and 30 kD) were isolated from ovine follicular fluid using a combination of gel permeation chromatography, reversed-phase high-performance liquid chromatography and preparative polyacrylamide gel electrophoresis. The 65 kD form was partially purified approximately 315-fold whilst the 30 kD form was isolated as two isoforms (29 and 30 kD) of similar biological activity and in >95% purity (1210-fold purification and 4·2% recoveries). On reduction the 30 kD form resolved into four components of 36, 31, 20–21 and 16 kD of which the 20–21 and 16 kD components were similar to the corresponding inhibin subunits isolated from porcine and bovine follicular fluid. The 36 kD component was established as a non-reducible inhibin-like material, based on its binding to antiserum raised against bovine 58 kD inhibin. The nature of the remaining non-reducible 31 kD component is unknown. Two NH2-terminal amino acid sequences (first 13 amino acids) identified in purified 30 kD inhibin were identical to the corresponding subunit amino acid sequences of bovine 31 kD inhibin. J. Endocr. (1987) 113, 213–221


1999 ◽  
Vol 65 (9) ◽  
pp. 3964-3968 ◽  
Author(s):  
Masahiro Nogawa ◽  
Kenji Yatsui ◽  
Akiko Tomioka ◽  
Hirofumi Okada ◽  
Yasushi Morikawa

ABSTRACT l-Sorbose, an excellent cellulase and xylanase inducer from Trichoderma reesei PC-3-7, also induced α-l-arabinofuranosidase (α-AF) activity. An α-AF induced by l-sorbose was purified to homogeneity, and its molecular mass was revealed to be 35 kDa (AF35), which was not consistent with that of the previously reported α-AF. Another species, with a molecular mass of 53 kDa (AF53), which is identical to that of the reported α-AF, was obtained by a different purification procedure. Acid treatment of the ammonium sulfate-precipitated fraction at pH 3.0 in the purification steps or pepsin treatment of the purified AF53 reduced the molecular mass to 35 kDa. Both purified enzymes have the same enzymological properties, such as pH and temperature effects on activity and kinetic parameters forp-nitrophenyl-α-l-arabinofuranoside (pNPA). Moreover, the N-terminal amino acid sequences of these enzymes were identical with that of the reported α-AF. Therefore, it is obvious that AF35 results from the proteolytic cleavage of the C-terminal region of AF53. Although AF35 and AF53 showed the same catalytic constant with pNPA, the former showed drastically reduced specific activity against oat spelt xylan compared to the latter. Furthermore, AF53 was bound to xylan rather than to crystalline cellulose (Avicel), but AF35 could not be bound to any of the glycans. These results suggest that AF53 is a modular glycanase, which consists of an N-terminal catalytic domain and a C-terminal noncatalytic xylan-binding domain.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 817A-817
Author(s):  
Russell Pressey ◽  
C.M. Sean Carrington

Tomatoes contain several isozymes of β-galactosidase, but only one, β-galactosidase II, can hydrolyze the β-1,4-galactans in tomato cell walls. β-galactosidase II has now been highly purified by modification of the original procedure. The molecular weight of this isozyme is ≈62 kDa according to gel infiltration, but SDS-PAGE of the purified enzyme separated three components with molecular weights of 29, 42, and 82 kDa. The 82-kDa peptide may be the intact enzyme and the smallest peptides are subunits as proposed for other β-galactosidases. The N-terminal amino acid sequence of β-galactosidase II showed high homology with amino acid sequences reported for other plant β-galactosidases. A new assay for β-galactosidase II in tomato extracts has been developed using FPLC. This isozyme was not detected in mature-green tomatoes but appeared at about the breaker stage and increased during ripening. The increase in b-galactosidase II was accompanied by a decrease in galactose content of cell wall polysaccharides, suggesting that this enzyme may be involved in the loss of galactose during tomato ripening.


1998 ◽  
Vol 63 (3) ◽  
pp. 434-440 ◽  
Author(s):  
Irena Hulová ◽  
Jana Barthová ◽  
Helena Ryšlavá ◽  
Václav Kašička

Glycoproteins that have affinity to Concanavalin A were isolated from the acetone-dried pituitaries of common carp (Cyprinus carpio L.). Two fractions of glycoproteins were separated using gel chromatography on Superdex 75HR. The fraction with lower molecular weight (30 000) corresponding to the carp gonadotropin cGtH II was composed of two subunits as determined using SDS-PAGE. This protein fraction was further divided into four components using reversed-phase HPLC. Two fractions were pure α and β subunits of cGtH II as follows from immunodetection and from determination of N-terminal amino acid sequences. The other two were a mixture of α and β subunits as was also revealed by N-terminal analysis. Capillary electrophoresis was also used for characterization of isolated glycoproteins.


1990 ◽  
Vol 171 (2) ◽  
pp. 565-570 ◽  
Author(s):  
K Ritter ◽  
H Brestrich ◽  
B Nellen ◽  
H Kratzin ◽  
H Eiffert ◽  
...  

In sera from patients with acute EBV, infection and the clinical symptoms of infectious mononucleosis antibodies of the Ig class M were found that are directed against two cellular proteins. The molecular mass of these proteins was determined to be 29 (p29) and 26 kD (p26), respectively, in SDS-PAGE. P29 was identified as part of the glycolytic enzyme triosephosphate isomerase (TPI) by comparison of the NH2-terminal amino acid sequences. A purified antibody against TPI induces a 51Cr release from human erythrocytes. Possibly, anti-TPI causes hemolysis, which is an infrequent but serious symptom of infectious mononucleosis.


1980 ◽  
Vol 187 (3) ◽  
pp. 863-874 ◽  
Author(s):  
D M Johnson ◽  
J Gagnon ◽  
K B Reid

The serine esterase factor D of the complement system was purified from outdated human plasma with a yield of 20% of the initial haemolytic activity found in serum. This represented an approx. 60 000-fold purification. The final product was homogeneous as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis (with an apparent mol.wt. of 24 000), its migration as a single component in a variety of fractionation procedures based on size and charge, and its N-terminal amino-acid-sequence analysis. The N-terminal amino acid sequence of the first 36 residues of the intact molecule was found to be homologous with the N-terminal amino acid sequences of the catalytic chains of other serine esterases. Factor D showed an especially strong homology (greater than 60% identity) with rat ‘group-specific protease’ [Woodbury, Katunuma, Kobayashi, Titani, & Neurath (1978) Biochemistry 17, 811-819] over the first 16 amino acid residues. This similarity is of interest since it is considered that both enzymes may be synthesized in their active, rather than zymogen, forms. The three major CNBr fragments of factor D, which had apparent mol.wts. of 15 800, 6600 and 1700, were purified and then aligned by N-terminal amino acid sequence analysis and amino acid analysis. By using factor D labelled with di-[1,3-14C]isopropylphosphofluoridate it was shown that the CNBr fragment of apparent mol.wt. 6600, which is located in the C-terminal region of factor D, contained the active serine residue. The amino acid sequence around this residue was determined.


1979 ◽  
Vol 34 (9-10) ◽  
pp. 721-725 ◽  
Author(s):  
Heinz Großmann ◽  
Manfred Liefländer

Abstract Acetylcholinesterase was released from bovine erythrocytes by Triton X-100 treatment and pu­rified by twofold affinity chromatography. The detergentfree enzyme was obtained with a specific activity of 4130 U /mg (303 000-fold purification) and a 25% yield. Alternatively, the commercial available crude enzyme was purified. The latter preparation has an uniform molecular weight (Mr 175 000). The Triton-solubilized enzyme, however, can be resolved after removal of the detergent in eight multiple forms (Mr 175 000 and multiple values), in the presence of Triton there exists only one form (Mr 338 000). The amino acid composition of the two enzyme preparations differs significantly. No differences were observed with respect to other properties: SDS gel electrophore­sis revealed two protein bands (Mr 166 000 and 86 000) with both preparations. The enzyme is a glycoprotein with a pI value of 4.3 and contains strongly bound phosphatidylethanolamine. The N-terminal amino acid has been found to be Glu (or Gin).


1993 ◽  
Vol 39 (4) ◽  
pp. 442-447 ◽  
Author(s):  
Joanne Hutsul ◽  
Elizabeth Worobec ◽  
Tom R. Parr Jr. ◽  
Gerald W. Becker

Eight Serratia strains and several members of the Enterobacteriaceae family were used in immunoblot and Southern DNA hybridization experiments and probed with antibody and DNA probes specific for the 41-kDa Serratia marcescens porin, to determine the extent of homology between Gram-negative porins. Immunoblot analyses performed using porin-specific rabbit sera and cell envelope preparations from these strains revealed that all strains produced at least one cross-reactive protein in the 41-kDa molecular weight range. Chromosomal DNA from each of the same strains was used in Southern analyses, probed with a 20-base-length oligonucleotide probe deduced from the N-terminal amino acid sequence of the 41-kDa Serratia marcescens porin. The probe hybridized to DNA from all of the Serratia species and six of the nine other enteric bacteria. Putative porin proteins from all the Serratia species were subjected to N-terminal amino acid sequencing and porin functional analysis using the black lipid bilayer method. All amino acid sequences were identical, with one exception in which an asparagine was substituted for an aspartic acid in Serratia rubidaea. All porins had very similar porin function (single channel conductance ranging between 1.72 and 2.00 nS). The results from this study revealed that a strong conservation exists among the Serratia porins and those produced by other enteric bacteria.Key words: porins, Serratia marcescens, homology studies.


Sign in / Sign up

Export Citation Format

Share Document