scholarly journals Utilization of Oligopeptides by Listeria monocytogenes Scott A

1998 ◽  
Vol 64 (3) ◽  
pp. 1059-1065 ◽  
Author(s):  
Annette Verheul ◽  
Frank M. Rombouts ◽  
Tjakko Abee

ABSTRACT For effective utilization of peptides, Listeria monocytogenes possesses two different peptide transport systems. The first one is the previously described proton motive force (PMF)-driven di- and tripeptide transport system (A. Verheul, A. Hagting, M.-R. Amezaga, I. R. Booth, F. M. Rombouts, and T. Abee, Appl. Environ. Microbiol. 61:226–233, 1995). The present results reveal that L. monocytogenes possesses an oligopeptide transport system, presumably requiring ATP rather than the PMF as the driving force for translocation. Experiments to determine growth in a defined medium containing peptides of various lengths suggested that the oligopeptide permease transports peptides of up to 8 amino acid residues. Peptidase activities towards several oligopeptides were demonstrated in cell extract from L. monocytogenes, which indicates that upon internalization, the oligopeptides are hydrolyzed to serve as sources of amino acids for growth. The peptide transporters of the nonproteolytic L. monocytogenes might play an important role in foods that harbor indigenous proteinases and/or proteolytic microorganisms, since Pseudomonas fragi as well as Bacillus cereus was found to enhance the growth ofL. monocytogenes to a large extent in a medium in which the milk protein casein was the sole source of nitrogen. In addition, growth stimulation was elicited in this medium when casein was hydrolyzed by using purified protease from Bacillus licheniformis. The possible contribution of the oligopeptide transport system in the establishment of high numbers of L. monocytogenes cells in fermented milk products is discussed.

1998 ◽  
Vol 64 (4) ◽  
pp. 1230-1236 ◽  
Author(s):  
Vincent Juillard ◽  
Alain Guillot ◽  
Dominique Le Bars ◽  
Jean-Claude Gripon

ABSTRACT To study the substrate specificity of the oligopeptide transport system of Lactococcus lactis for its natural substrates, the growth of L. lactis MG1363 was studied in a chemically defined medium containing milk peptides or a tryptic digest of αs2-casein as the source of amino acids. Peptides were separated into acidic, neutral, and basic pools by solid-phase extraction or by cation-exchange liquid chromatography. Their ability to sustain growth and the time course of their utilization demonstrated the preferential use of hydrophobic basic peptides with molecular masses ranging between 600 and 1,100 Da by L. lactis MG1363 and the inability to use large, acidic peptides. These peptide utilization preferences reflect the substrate specificity of the oligopeptide transport system of the strain, since no significant cell lysis was inferred. Considering the free amino acid content of milk and these findings on peptide utilization, it was demonstrated that the cessation of growth of L. lactis MG1363 in milk was due to deprivation of leucine and methionine.


2009 ◽  
Vol 191 (14) ◽  
pp. 4647-4655 ◽  
Author(s):  
Rozenn Gardan ◽  
Colette Besset ◽  
Alain Guillot ◽  
Christophe Gitton ◽  
Véronique Monnet

ABSTRACT In gram-positive bacteria, oligopeptide transport systems, called Opp or Ami, play a role in nutrition but are also involved in the internalization of signaling peptides that take part in the functioning of quorum-sensing pathways. Our objective was to reveal functions that are controlled by Ami via quorum-sensing mechanisms in Streptococcus thermophilus, a nonpathogenic bacterium widely used in dairy technology in association with other bacteria. Using a label-free proteomic approach combining one-dimensional electrophoresis with liquid chromatography-tandem mass spectrometry analysis, we compared the proteome of the S. thermophilus LMD-9 to that of a mutant deleted for the subunits C, D, and E of the ami operon. Both strains were grown in a chemically defined medium (CDM) without peptides. We focused our attention on proteins that were no more detected in the ami deletion mutant. In addition to the three subunits of the Ami transporter, 17 proteins fulfilled this criterion and, among them, 7 were similar to proteins that have been identified as essential for transformation in S. pneumoniae. These results led us to find a condition of growth, the early exponential state in CDM, that allows natural transformation in S. thermophilus LMD-9 to turn on spontaneously. Cells were not competent in M17 rich medium. Furthermore, we demonstrated that the Ami transporter controls the triggering of the competence state through the control of the transcription of comX, itself controlling the transcription of late competence genes. We also showed that one of the two oligopeptide-binding proteins of strain LMD-9 plays the predominant role in the control of competence.


1995 ◽  
Vol 270 (4) ◽  
pp. 1569-1574 ◽  
Author(s):  
Edmund R. S. Kunji ◽  
Anja Hagting ◽  
Corry J. De Vries ◽  
Vincent Juillard ◽  
Alfred J. Haandrikman ◽  
...  

Biochemistry ◽  
1998 ◽  
Vol 37 (47) ◽  
pp. 16671-16679 ◽  
Author(s):  
Frank J. M. Detmers ◽  
Edmund R. S. Kunji ◽  
Frank C. Lanfermeijer ◽  
Bert Poolman ◽  
Wil N. Konings

Gene ◽  
2015 ◽  
Vol 558 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Martha Wium ◽  
Annelise Botes ◽  
Dirk U. Bellstedt

2011 ◽  
Vol 300 (6) ◽  
pp. C1260-C1269 ◽  
Author(s):  
Paresh Chothe ◽  
Nagendra Singh ◽  
Vadivel Ganapathy

Recently the existence of two different Na+-coupled oligopeptide transport systems has been described in mammalian cells. These transport systems are distinct from the previously known H+/peptide cotransporters PEPT1 and PEPT2, which transport only dipeptides and tripeptides. To date, the only peptide transport system known to exist in the intestine is PEPT1. Here we investigated the expression of the Na+-coupled oligopeptide transporters in intestinal cell lines, using the hydrolysis-resistant synthetic oligopeptides deltorphin II and [d-Ala2,d-Leu5]enkephalin (DADLE) as model substrates. Caco-2 cells and CCD841 cells, both representing epithelial cells from human intestinal tract, were able to take up these oligopeptides. Uptake of deltorphin II was mostly Na+ dependent, with more than 2 Na+ involved in the uptake process. In contrast, DADLE uptake was only partially Na+ dependent. The uptake of both peptides was also influenced by H+ and Cl−, although to a varying degree. The processes responsible for the uptake of deltorphin II and DADLE could be differentiated not only by their Na+ dependence but also by their modulation by small peptides. Several dipeptides and tripeptides stimulated deltorphin II uptake but inhibited DADLE uptake. These modulating small peptides were, however, not transportable substrates for the transport systems that mediate deltorphin II or DADLE uptake. These two oligopeptide transport systems were also able to take up several nonopioid oligopeptides, consisting of 9–17 amino acids. This represents the first report on the existence of transport systems in intestinal cells that are distinct from PEPT1 and capable of transporting oligopeptides consisting of five or more amino acids.


Plasmid ◽  
1996 ◽  
Vol 35 (3) ◽  
pp. 145-155 ◽  
Author(s):  
Weizhu Yu ◽  
Kevin Gillies ◽  
Jeffery K. Kondo ◽  
Jeffery R. Broadbent ◽  
Larry L. McKay

2007 ◽  
Vol 189 (14) ◽  
pp. 5119-5129 ◽  
Author(s):  
Aurelia Hiron ◽  
Elise Borezée-Durant ◽  
Jean-Christophe Piard ◽  
Vincent Juillard

ABSTRACT Oligopeptides internalized by oligopeptide permease (Opp) transporters play key roles in bacterial nutrition, signaling, and virulence. To date, two opp operons, opp-1 and opp-2, have been identified in Staphylococcus aureus. Systematic in silico analysis of 11 different S. aureus genomes revealed the existence of two new opp operons, opp-3 and opp-4, plus an opp-5A gene encoding a putative peptide-binding protein. With the exception of opp-4, the opp operons were present in all S. aureus strains. Within a single strain, the different opp operons displayed little sequence similarity and distinct genetic organization. Transcriptional studies showed that opp-1, opp-2, opp-3, and opp-4 operons were polycistronic and that opp-5A is monocistronic. We designed a minimal chemically defined medium for S. aureus RN6390 and showed that all opp genes were expressed but at different levels. Where tested, OppA protein production paralleled transcriptional profiles. opp-3, which encodes proteins most similar to known peptide transport proteins, displayed the highest expression level and was the only transporter to be regulated by specific amino acids, tyrosine and phenylalanine. Defined deletion mutants in one or several peptide permeases were constructed and tested for their capacity to grow in peptide-containing medium. Among the four putative Opp systems, Opp-3 was the only system able to provide oligopeptides for growth, ranging in length from 3 to 8 amino acids. Dipeptides were imported exclusively by DtpT, a proton-driven di- and tripeptide permease. These data provide a first complete inventory of the peptide transport systems opp and dtpT of S. aureus. Among them, the newly identified Opp-3 appears to be the main Opp system supplying the cell with peptides as nutritional sources.


Sign in / Sign up

Export Citation Format

Share Document