scholarly journals Motility of Marichromatium gracilein Response to Light, Oxygen, and Sulfide

2001 ◽  
Vol 67 (12) ◽  
pp. 5410-5419 ◽  
Author(s):  
Roland Thar ◽  
Michael Kühl

ABSTRACT The motility of the purple sulfur bacterium Marichromatium gracile was investigated under different light regimes in a gradient capillary setup with opposing oxygen and sulfide gradients. The gradients were quantified with microsensors, while the behavior of swimming cells was studied by video microscopy in combination with a computerized cell tracking system. M. gracile exhibited photokinesis, photophobic responses, and phobic responses toward oxygen and sulfide. The observed migration patterns could be explained solely by the various phobic responses. In the dark, M. gracileformed an ∼500-μm-thick band at the oxic-anoxic interface, with a sharp border toward the oxic zone always positioned at ∼10 μM O2. Flux calculations yielded a molar conversion ratio Stot/O2 of 2.03:1 (Stot = [H2S] + [HS−] + [S2−]) for the sulfide oxidation within the band, indicating that in darkness the bacteria oxidized sulfide incompletely to sulfur stored in intracellular sulfur globules. In the light, M. gracilespread into the anoxic zone while still avoiding regions with >10 μM O2. The cells also preferred low sulfide concentrations if the oxygen was replaced by nitrogen. A light-dark transition experiment demonstrated a dynamic interaction between the chemical gradients and the cell's metabolism. In darkness and anoxia, M. gracile lost its motility after ca. 1 h. In contrast, at oxygen concentrations of >100 μM with no sulfide present the cells remained viable and motile for ca. 3 days both in light and darkness. Oxygen was respired also in the light, but respiration rates were lower than in the dark. Observed aggregation patterns are interpreted as effective protection strategies against high oxygen concentrations and might represent first stages of biofilm formation.

2019 ◽  
Vol 116 (38) ◽  
pp. 19116-19125 ◽  
Author(s):  
Kasper U. Kjeldsen ◽  
Lars Schreiber ◽  
Casper A. Thorup ◽  
Thomas Boesen ◽  
Jesper T. Bjerg ◽  
...  

Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genomics and metagenomics to retrieve draft genomes of 3 marine Candidatus Electrothrix and 1 freshwater Ca. Electronema species. These genomes contain >50% unknown genes but still share their core genomic makeup with sulfate-reducing and sulfur-disproportionating Desulfobulbaceae, with few core genes lost and 212 unique genes (from 197 gene families) conserved among cable bacteria. Last common ancestor analysis indicates gene divergence and lateral gene transfer as equally important origins of these unique genes. With support from metaproteomics of a Ca. Electronema enrichment, the genomes suggest that cable bacteria oxidize sulfide by reversing the canonical sulfate reduction pathway and fix CO2 using the Wood–Ljungdahl pathway. Cable bacteria show limited organotrophic potential, may assimilate smaller organic acids and alcohols, fix N2, and synthesize polyphosphates and polyglucose as storage compounds; several of these traits were confirmed by cell-level experimental analyses. We propose a model for electron flow from sulfide to oxygen that involves periplasmic cytochromes, yet-unidentified conductive periplasmic fibers, and periplasmic oxygen reduction. This model proposes that an active cable bacterium gains energy in the anodic, sulfide-oxidizing cells, whereas cells in the oxic zone flare off electrons through intense cathodic oxygen respiration without energy conservation; this peculiar form of multicellularity seems unparalleled in the microbial world.


SOLA ◽  
2012 ◽  
Vol 8 (0) ◽  
pp. 141-144 ◽  
Author(s):  
Syo Yoshida ◽  
Ryohei Misumi ◽  
Shingo Shimizu ◽  
Takeshi Maesaka ◽  
Koyuru Iwanami ◽  
...  

Microbiology ◽  
2011 ◽  
Vol 157 (4) ◽  
pp. 1229-1239 ◽  
Author(s):  
Carina Holkenbrink ◽  
Santiago Ocón Barbas ◽  
Anders Mellerup ◽  
Hiroyo Otaki ◽  
Niels-Ulrik Frigaard

Green sulfur bacteria (GSB) oxidize sulfide and thiosulfate to sulfate, with extracellular globules of elemental sulfur as an intermediate. Here we investigated which genes are involved in the formation and consumption of these sulfur globules in the green sulfur bacterium Chlorobaculum tepidum. We show that sulfur globule oxidation is strictly dependent on the dissimilatory sulfite reductase (DSR) system. Deletion of dsrM/CT2244 or dsrT/CT2245, or the two dsrCABL clusters (CT0851–CT0854, CT2247–2250), abolished sulfur globule oxidation and prevented formation of sulfate from sulfide, whereas deletion of dsrU/CT2246 had no effect. The DSR system also seems to be involved in the formation of thiosulfate, because thiosulfate was released from wild-type cells during sulfide oxidation, but not from the dsr mutants. The dsr mutants incapable of complete substrate oxidation oxidized sulfide and thiosulfate about twice as fast as the wild-type, while having only slightly lower growth rates (70–80 % of wild-type). The increased oxidation rates seem to compensate for the incomplete substrate oxidation to satisfy the requirement for reducing equivalents during growth. A mutant in which two sulfide : quinone oxidoreductases (sqrD/CT0117 and sqrF/CT1087) were deleted exhibited a decreased sulfide oxidation rate (∼50 % of wild-type), yet formation and consumption of sulfur globules were not affected. The observation that mutants lacking the DSR system maintain efficient growth suggests that the DSR system is dispensable in environments with sufficiently high sulfide concentrations. Thus, the DSR system in GSB may have been acquired by horizontal gene transfer as a response to a need for enhanced substrate utilization in sulfide-limiting habitats.


2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Agung Wijaya ◽  
Bengawan Alfaresi ◽  
Feby Ardianto

Solar cell tracking system is a system that uses the latest technology with combining solar tracking, the intensity of sunlight absorbed by solar cells can be optimized automatically. The purpose of this study is to make the Arduino-based solar monitoring system and load protection tool. The device is also equipped with an LDR sensor that detects the presence of sunlight, sends data from the LDR to Arduino and delivers signals to linear actuators. When the charge supplied by the battery exceeds the capacity of the battery, the INA219 sensor detects overload and a signal sent to Arduino asking for a relay to release the load. The results showed that tracking solar cell systems were successful in improving the efficiency of solar cells with an average power yield of 0.87 ampere of 12.62 watts from before without tracking the average obtained 0.62 ampere 8.83 atts. The performance of the protection system indicates that the load is cut off when the charging current exceeds the specified limit of 2.6 ampere.


2010 ◽  
Vol 265 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Yeon Hwa Kwak ◽  
Sung Min Hong ◽  
Soon Sup Park

2005 ◽  
Vol 288-289 ◽  
pp. 503-506
Author(s):  
B.J. Park ◽  
Seok Cheol Kim ◽  
D.H. Lee ◽  
Hyun Joo Son ◽  
K.C. Nam ◽  
...  

In this study, a computer-assisted cell tracking system including an automatic image processing program for rapid and precise analysis of cell migration in various conditions was self-designed and L-929 cell migration on the glass coated with type I collagen was examined using this cell tracking system. Furthermore, computer-based image processing software, with the capture program to choose the capture interval and period, and analysis techniques were developed for quantitative analysis of the cell migration on extracellular matrices. The results showed that the migration speed of L-929 cells on the collagen-coated glass was significantly (p < 0.05) increased compared to the non-coated control. On the morphological observations, it was showed that the cells on the collagen-coated glass looked much healthier than those on the control. These results suggested that this cell tracking system would provide tools for the analysis of cell migration in various in vitro conditions and might be effective enough to evaluate various biological events including embryonic development as well as physiological and pathological tissue reorganization.


2015 ◽  
Vol 12 (16) ◽  
pp. 5075-5092 ◽  
Author(s):  
A. Lichtschlag ◽  
D. Donis ◽  
F. Janssen ◽  
G. L. Jessen ◽  
M. Holtappels ◽  
...  

Abstract. The outer western Crimean shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic versus varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom-water oxygen concentrations ranged from normoxic (175 μmol O2 L−1) and hypoxic (< 63 μmol O2 L−1) or even anoxic/sulfidic conditions within a few kilometers' distance. Variations in oxygen concentrations between 160 and 10 μmol L−1 even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 15 mmol m−2 d−1 on average in the oxic zone, to 7 mmol m−2 d−1 on average in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising respiration of microorganisms and small meiofauna, were similar in oxic and hypoxic zones (on average 4.5 mmol m−2 d−1), but declined to 1.3 mmol m−2 d−1 in bottom waters with oxygen concentrations below 20 μmol L−1. Measurements and modeling of porewater profiles indicated that reoxidation of reduced compounds played only a minor role in diffusive oxygen uptake under the different oxygen conditions, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from nearly 100 % in the oxic zone, to 50 % in the oxic–hypoxic zone, to 10 % in the hypoxic–anoxic zone. Overall, the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations, than microbial and geochemical oxidation processes.


Author(s):  
Fernanda dos Santos Costa Leomil ◽  
Pedro Xavier de Oliveira

Sign in / Sign up

Export Citation Format

Share Document