scholarly journals Use of Bifidobacterium dentium as an Indicator of the Origin of Fecal Water Pollution

2003 ◽  
Vol 69 (5) ◽  
pp. 2651-2656 ◽  
Author(s):  
Yolanda Nebra ◽  
Xavier Bonjoch ◽  
Anicet R. Blanch

ABSTRACT A new, simple, and specific protocol to discriminate between human and animal fecal pollution is described. The procedure is based on the detection of certain Bifidobacterium species in the samples. Two 16S rRNA gene-targeted probes are described. One of these probes (BDE) has as its target a region of the 16S rRNA gene of Bifidobacterium dentium, a Bifidobacterium species of exclusively human origin. The other probe (BAN) is based on the sequence of a region of 16S rRNA gene for several Bifidobacterium species related with animal origins. The specificity of both probes was evaluated by using 24 Bifidobacterium species, and their threshold detection limit was established by DNA-DNA hybridization. DNA-DNA hybridization with the BDE probe showed it to be specific for B. dentium, whereas that with the BAN probe showed it to be specific for B. animalis, B. asteroides, B. coryneforme, B. cuniculi, B. globosum, B. magnum, B. minimum, and B. subtile. A simple and specific protocol was also developed for the detection of their target species in environmental samples (sewage and feces). DNA-DNA hybridization with the BAN probe was only positive for samples from cattle and goats. Thus, this probe is not suitable for the identification of any animal fecal pollution. Whereas all samples with human fecal pollution showed a positive DNA-DNA hybridization result with the BDE probe, none of those with animal fecal pollution did. Therefore, this finding supports the potential use of this probe in detecting fecal pollution of human origin.

2010 ◽  
Vol 60 (4) ◽  
pp. 949-952 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
Rangasamy Anandham ◽  
Seung-Hee Yoo ◽  
...  

An ivory-coloured bacterium, designated strain 5YN7-3T, was isolated from a wetland, Yongneup, Korea. Cells of the strain were aerobic, Gram-stain-negative, non-motile and short rods. 16S rRNA gene sequence analysis demonstrated that strain 5YN7-3T belongs to the order Rhizobiales of the class Alphaproteobacteria and is closely related to Kaistia soli 5YN9-8T (97.8 %), Kaistia granuli Ko04T (97.6 %) and Kaistia adipata Chj404T (97.4 %). Strain 5YN7-3T showed DNA–DNA hybridization values of 28, 22 and 35 % with K. granuli Ko04T, K. soli 5YN9-8T and K. adipata Chj404T, respectively. The major fatty acids were C18 : 1 ω7c (51.2 %), C19 : 0 cyclo ω8c (25.0 %), C18 : 0 (12.9 %) and C16 : 0 (10.8 %) (>10 % of total fatty acids). Ubiquinone-10 was the major isoprenoid quinone and the DNA G+C content was 66.5 mol%. The phenotypic characteristics in combination with 16S rRNA gene sequence analysis and DNA–DNA hybridization data clearly define strain 5YN7-3T as a novel species of the genus Kaistia, for which the name Kaistia terrae sp. nov. is proposed. The type strain is 5YN7-3T (=KACC 12910T =DSM 21341T).


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 754-759 ◽  
Author(s):  
Paulina Corral ◽  
Angela Corcelli ◽  
Antonio Ventosa

An extremely haloalkaphilic archaeon, strain T26T, belonging to the genus Halostagnicola , was isolated from sediment of the soda lake Bange in the region of Tibet, China. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain T26T was closely related to Halostagnicola alkaliphila 167-74T (98.4 %), Halostagnicola larsenii XH-48T (97.5 %) and Halostagnicola kamekurae 194-10T (96.8 %). Strain T26T grew optimally in media containing 25 % (w/v) salts, at pH 9.0 and 37 °C in aerobic conditions. Mg2+ was not required for growth. The cells were motile, pleomorphic and Gram-stain-variable. Colonies of this strain were pink pigmented. Hypotonic treatment caused cell lysis. The polar lipids of the isolate consisted of C20C20 and C20C25 derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and minor phospholipids components. Glycolipids were not detected, in contrast to the two neutrophilic species of this genus. The genomic DNA G+C content of strain T26T was 60.1 mol% and DNA–DNA hybridization showed a relatedness of 19 and 17 % with Halostagnicola alkaliphila CECT 7631T and Halostagnicola larsenii CECT 7116T, respectively. The comparison of 16S rRNA gene sequences, detailed phenotypic characterization, polar lipid profile and DNA–DNA hybridization studies revealed that strain T26T belongs to the genus Halostagnicola , and represents a novel species for which the name Halostagnicola bangensis sp. nov. is proposed. The type strain is T26T ( = CECT 8219T = IBRC-M 10759T = JCM 18750T).


Author(s):  
Xiaoying Rong ◽  
Ying Huang

Streptomyces griseus and related species form the biggest but least well-defined clade in the whole Streptomyces 16S rRNA gene tree. Multilocus sequence analysis (MLSA) has shown promising potential for refining Streptomyces systematics. In this investigation, strains of 18 additional S. griseus clade species were analysed and data from a previous pilot study were integrated in a larger MLSA phylogeny. The results demonstrated that MLSA of five housekeeping genes (atpD, gyrB, recA, rpoB and trpB) is better than the previous six-gene scheme, as it provides equally good resolution and stability and is more cost-effective; MLSA using three or four of the genes also shows good resolution and robustness for differentiating most of the strains and is therefore of value for everyday use. MLSA is more suitable for discriminating strains that show >99 % 16S rRNA gene sequence similarity. DNA–DNA hybridization (DDH) between strains with representative MLSA distances revealed a strong correlation between the data of MLSA and DDH. The 70 % DDH value for current species definition corresponds to a five-gene MLSA distance of 0.007, which could be considered as the species cut-off for the S. griseus clade. It is concluded that the MLSA procedure can be a practical, reliable and robust alternative to DDH for the identification and classification of streptomycetes at the species and intraspecies levels. Based on the data from MLSA and DDH, as well as cultural and morphological characteristics, 18 species and three subspecies of the S. griseus clade are considered to be later heterotypic synonyms of 11 genomic species: Streptomyces griseinus and Streptomyces mediolani as synonyms of Streptomyces albovinaceus; Streptomyces praecox as a synonym of Streptomyces anulatus; Streptomyces olivoviridis as a synonym of Streptomyces atroolivaceus; Streptomyces griseobrunneus as a synonym of Streptomyces bacillaris; Streptomyces cavourensis subsp. washingtonensis as a synonym of Streptomyces cyaneofuscatus; Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies and Streptomyces flavofuscus as synonyms of Streptomyces fimicarius; Streptomyces flavogriseus as a synonym of Streptomyces flavovirens; Streptomyces erumpens, ‘Streptomyces ornatus’ and Streptomyces setonii as synonyms of Streptomyces griseus; Streptomyces graminofaciens as a synonym of Streptomyces halstedii; Streptomyces alboviridis, Streptomyces griseus subsp. alpha, Streptomyces griseus subsp. cretosus and Streptomyces luridiscabiei as synonyms of Streptomyces microflavus; and Streptomyces californicus and Streptomyces floridae as synonyms of Streptomyces puniceus.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4335-4340 ◽  
Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
John A. McInroy ◽  
Stefanie P. Glaeser

A beige-pigmented bacterial strain (JM-310T), isolated from the healthy internal root tissue of 4-week-old cotton (Gossypium hirsutum, cultivar ‘DES-119’) in Tallassee (Macon county), Alabama, USA, was studied taxonomically. The isolate produced small rod-shaped cells, which showed a Gram-negative staining behaviour. A comparison of the 16S rRNA gene sequence of the isolate revealed 99.2, 98.8, 98.7, 98.7, 98.1 and 97.6 % similarity to the 16S rRNA gene sequences of the type strains of Variovorax paradoxus, Variovorax boronicumulans, Variovorax ginsengisoli, Variovorax soli, Variovorax defluvii and Variovorax dokdonensis, respectively. In phylogenetic trees based on 16S rRNA gene sequences, strain JM-301T was placed within the monophyletic cluster of Variovorax species. The fatty acid profile of strain JM-310T consisted mainly of the major fatty acids C16 : 0, C10 : 0 3-OH and summed feature 4 (iso-C15 : 0 2-OH/C16 : 1ω7c/t). The quinone system of strain JM-310T contained predominantly ubiquinone Q-8 and lesser amounts of Q-7 and Q-9. The major polyamine was putrescine and the diagnostic polyamine 2-hydroxyputrescine was detected as well. The polar lipid profile consisted of the major lipids phosphatidylethanolamine, phosphatidylglycerol, diphospatidylglycerol and several unidentified lipids. DNA–DNA hybridization experiments with V. paradoxus LMG 1797T, V. boronicumulans 1.22T, V. soli KACC 11579T and V. ginsengisoli 3165T gave levels of relatedness of < 70 %. These DNA–DNA hybridization results in addition to differential biochemical properties indicate clearly that strain JM-310T is a member of a novel species, for which the name Variovorax gossypii sp. nov. is proposed. The type strain is JM-310T ( = LMG 28869T = CIP 110912T = CCM 8614T).


2007 ◽  
Vol 57 (9) ◽  
pp. 1966-1969 ◽  
Author(s):  
Shoichi Hosoya ◽  
Akira Yokota

A Gram-negative, rod-shaped bacterium, IG8T, was isolated from seawater off the Sanriku coast, Japan. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain IG8T represented a separate lineage within the genus Loktanella; the highest 16S rRNA gene sequence similarity values were found with the type strains of Loktanella salsilacus (98.6 %) and Loktanella fryxellensis (98.4 %). DNA–DNA hybridization values between strain IG8T and the type strains of L. salsilacus (27.9–36.1 %) and L. fryxellensis (11.3–31.0 %) were clearly below 70 %, the generally accepted limit for species delineation. The DNA G+C content of strain IG8T was 66.3 mol%. On the basis of DNA–DNA hybridization, some biochemical characteristics and 16S rRNA gene sequence comparison, it is proposed that the isolate represents a novel species, Loktanella atrilutea sp. nov. The type strain is IG8T (=IAM 15450T=NCIMB 14280T).


2006 ◽  
Vol 56 (8) ◽  
pp. 1735-1740 ◽  
Author(s):  
Masataka Satomi ◽  
Myron T. La Duc ◽  
Kasthuri Venkateswaran

Thirteen strains of a novel spore-forming, Gram-positive, mesophilic heterotrophic bacterium were isolated from spacecraft surfaces (Mars Odyssey Orbiter) and assembly-facility surfaces at the Jet Propulsion Laboratory in California and the Kennedy Space Center in Florida. Phylogenetic analysis of 16S rRNA gene sequences has placed these novel isolates within the genus Bacillus, the greatest sequence similarity (99.9 %) being found with Bacillus pumilus. However, these isolates share a mere 91.2 % gyrB sequence similarity with Bacillus pumilus, rendering their 16S rRNA gene-derived relatedness suspect. Furthermore, DNA–DNA hybridization showed only 54–66 % DNA relatedness between the novel isolates and strains of B. pumilus. rep-PCR fingerprinting and previously reported matrix-assisted laser desorption/ionization time-of-flight mass spectrometry protein profiling clearly distinguished these isolates from B. pumilus. Phenotypic analyses also showed some differentiation between the two genotypic groups, although the fatty acid compositions were almost identical. The polyphasic taxonomic studies revealed distinct clustering of the tested strains into two distinct species. On the basis of phenotypic characteristics and the results of phylogenetic analyses of 16S rRNA and gyrB gene sequences, repetitive element primer-PCR fingerprinting and DNA–DNA hybridization, the 13 isolates represent a novel species of the genus Bacillus, for which the name Bacillus safensis sp. nov. is proposed. The type strain is FO-36bT (=ATCC BAA-1126T=NBRC 100820T).


2004 ◽  
Vol 54 (3) ◽  
pp. 935-940 ◽  
Author(s):  
Stuart P. Donachie ◽  
John P. Bowman ◽  
Maqsudul Alam

A Gram-negative bacterium designated LA1T was isolated from water collected in hypersaline Lake Laysan on Laysan Island in the Northwestern Hawaiian Islands. Cells occurred singly as fine rods to short filaments. Growth in 50 % strength marine broth occurred optimally when the medium contained 7·5–10 % (w/v) NaCl. The major fatty acids in LA1T grown at 15 and 30 °C were 12-methyl tetradecanoic acid and 13-methyl tetradecanoic acid, respectively. The nucleotide sequence of the 16S rRNA gene showed that LA1T belonged in the Cytophaga–Flavobacterium–Bacteroides (CFB) group in the domain Bacteria. The closest described neighbour in terms of 16S rRNA gene sequence identity was Psychroflexus torquis ACAM 623T (94·4 % over 1423 bases), an obligate psychrophile from Antarctic sea-ice. The G+C content of 35·0 mol% was consistent with this affiliation. Phenotypic and genotypic analyses, including DNA hybridization, indicated that LA1T could be assigned to the genus Psychroflexus but, based on significant differences, including growth at 43 °C, it constitutes a novel species, Psychroflexus tropicus sp. nov., for which LA1T (=ATCC BAA-734T=DSM 15496T) is the type strain.


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2684-2689 ◽  
Author(s):  
V. Venkata Ramana ◽  
P. Shalem Raj ◽  
L. Tushar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two strains (JA643T and JA755) of Gram-stain-negative, facultatively anaerobic phototrophic, bacteria capable of growth at low temperatures (10–15 °C) were isolated from freshwater streams from different geographical regions of India. Both strains contain bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid (PL), unidentified amino lipids (AL1–AL6, AL9) and an unidentified lipid (L1) were the polar lipids present in both strains. The major cellular fatty acid was C18 : 1ω7c (76–79 % of the total). Bacteriohopane derivatives (BHD1,2), unidentified hopanoids (UH1–5), diplopterol (DPL) and diploptene (DPE) were the major hopanoids of both strains. The DNA G+C content was 64.2–64.5 mol%. 16S rRNA gene sequence-based phylogenetic analysis showed that both strains are closely related to the genus Rhodomicrobium and clustered with Rhodomicrobium vannielii DSM 162T (99 % sequence similarity). However, both strains exhibited only 46.1 % DNA–DNA hybridization with R. vannielii DSM 162T. Strains JA643T and JA755 shared >99 % 16S rRNA gene sequence similarity and were >85 % related on the basis of DNA–DNA hybridization; they are therefore considered to represent a novel species in the genus Rhodomicrobium , for which the name Rhodomicrobium udaipurense sp. nov. is proposed. The type strain is JA643T ( = KCTC 15219T = NBRC 109057T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1663-1666 ◽  
Author(s):  
Wan-Taek Im ◽  
Seong-Hye Kim ◽  
Myung Kyum Kim ◽  
Leonid N. Ten ◽  
Sung-Taik Lee

A Gram-negative, non-motile, non-spore-forming, rod-shaped bacterium (strain Y9T) was isolated from a contaminated culture of the phototrophic bacterium Rhodopseudomonas palustris, and was investigated using a polyphasic taxonomic approach. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain Y9T belonged to the order Rhizobiales in the Alphaproteobacteria. Comparison of phylogenetic data indicated that it was most closely related to Pleomorphomonas oryzae (98.5 % similarity of 16S rRNA gene sequence), and the phylogenetic distance from any other species of the order Rhizobiales with a validly published name was greater than 7.5 % (i.e. less than 92.5 % similarity). The predominant ubiquinone was Q-10 and the major fatty acids were C18 : 1, C16 : 0, C19 : 0 cyclo ω8c and C18 : 0. The G+C content of genomic DNA of strain Y9T was 65.1 mol%. The results of DNA–DNA hybridization in combination with chemotaxonomic and physiological data demonstrated that strain Y9T represents a novel species within the genus Pleomorphomonas, for which the name Pleomorphomonas koreensis sp. nov. is proposed. The type strain is Y9T (=KCTC 12246T=NBRC 100803T)


2004 ◽  
Vol 54 (5) ◽  
pp. 1717-1721 ◽  
Author(s):  
M. Grazia Fortina ◽  
G. Ricci ◽  
D. Mora ◽  
P. L. Manachini

The taxonomic positions of seven atypical Enterococcus strains, isolated from artisanal Italian cheeses, were investigated in a polyphasic study. By using 16S rRNA gene sequencing, DNA–DNA hybridization and intergenic transcribed spacer analysis, as well as by examining the phenotypic properties, the novel isolates were shown to constitute a novel enterococcal species. Their closest relatives are Enterococcus sulfureus and Enterococcus saccharolyticus, having a 16S rRNA gene sequence similarity of 96·7 %. This group of strains can be easily differentiated from the other Enterococcus species by DNA–DNA hybridization and by their phenotypic characteristics: the strains do not grow in 6·5 % NaCl, and they do not produce acid from l-arabinose, melezitose, melibiose, raffinose or ribose. The name Enterococcus italicus sp. nov. is proposed for this species, with strain DSM 15952T (=LMG 22039T) as the type strain.


Sign in / Sign up

Export Citation Format

Share Document