scholarly journals Activity of Free and Clay-Bound Insecticidal Proteins from Bacillus thuringiensis subsp. israelensis against the Mosquito Culex pipiens

2003 ◽  
Vol 69 (7) ◽  
pp. 4111-4115 ◽  
Author(s):  
LanNa Lee ◽  
Deepak Saxena ◽  
G. Stotzky

ABSTRACT Bacillus thuringiensis subsp. israelensis produces parasporal insecticidal crystal proteins (ICPs) that have larvicidal activity against some members of the order Diptera, such as blackflies and mosquitoes. Hydrolysis of the ICPs in the larval gut results in four major proteins with a molecular mass of 27, 65, 128, and 135 kDa. Toxicity is caused by synergistic interaction between the 25-kDa protein (proteolytic product of the 27-kDa protein) and one or more of the higher-molecular-mass proteins. Equilibrium adsorption of the proteins on the clay minerals montmorillonite and kaolinite, which are homoionic to various cations, was rapid (<30 min for maximal adsorption), increased with protein concentration and then reached a plateau (68 to 96% of the proteins was adsorbed), was significantly lower on kaolinite than on montmorillonite, and was not significantly affected by the valence of the cation to which the clays were homoionic. Binding of the toxins decreased as the pH was increased from 6 to 11, and there was 35 to 66% more binding in phosphate buffer at pH 6 than in distilled water at pH 6 or 7.2. Only 2 to 12% of the adsorbed proteins was desorbed by two washes with water; additional washings desorbed no more toxins, indicating that they were tightly bound. Formation of clay-toxin complexes did not alter the structure of the proteins, as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the equilibrium supernatants and desorption washes and by dot blot enzyme-linked immunosorbent assay of the complexes, which was confirmed by enhanced chemiluminescence Western blot analysis. Free and clay-bound toxins resulted in 85 to 100% mortality of the mosquito Culex pipiens. Persistence of the bound toxins in nonsterile water after 45 days was significantly greater (mortality of 63% ± 12.7%) than that of the free toxins (mortality of 25% ± 12.5%).

1984 ◽  
Vol 224 (1) ◽  
pp. 59-66 ◽  
Author(s):  
A Franzén ◽  
D Heinegård

The proteoglycans characterized were those isolated from the calcified matrix of mature bovine bone [Franzén & Heinegård (1984) Biochem. J. 224, 47-58]. The average molecular mass of the bone proteoglycan is 74 600 Da, determined by sedimentation-equilibrium centrifugation in 4M-guanidinium chloride. Its sedimentation coefficient (s0(20),w) is 3.04 S. The apparent Mr of its core protein is 46 000, estimated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the chondroitinase ABC-digested proteoglycan. A more likely molecular mass of the core protein is 30 000 Da, as calculated from the molecular mass and the protein content (40%) of the proteoglycan. The bone proteoglycan contains one or probably two chondroitin sulphate chains each with a molecular mass (weight-average) of 33 700 Da and several oligosaccharides both of the N-glycosidically and the O-glycosidically linked type. Antibodies against the homogeneous bone proteoglycans were raised in rabbits. An e.l.i.s.a. (enzyme-linked immunosorbent assay) method was developed that allowed specific quantification of bone proteoglycans at nanogram levels. The specificity of the antibodies was tested by using the e.l.i.s.a. method. The bone proteoglycan showed partial cross-reactivity with the small proteoglycan of cartilage. The antibodies were used to localize immunoreactivity of bone proteoglycans by indirect immunofluorescence in frozen sections of foetal bovine epiphysial growth plate. The fluorescence was entirely found in the primary spongiosa, and no fluorescence was found among the hypertrophied chondrocytes or in the region of provisional calcification.


1991 ◽  
Vol 69 (5-6) ◽  
pp. 358-365 ◽  
Author(s):  
R. R. Baker ◽  
H.-y. Chang

Phospholipase A2 was extensively purified (1300- to 1400-fold) from rat serum using Sephadex G-100 chromatography. It eluted at a position corresponding to a molecular mass of about 15 kDa. This one purification step gave two bands on sodium dodecyl sulfate – polyacrylamide gel electrophoresis. The faster component had a molecular mass of 16 kDa and the slower band likely contained an aggregate of the faster component. Activity was associated with protein bands on nondenaturing gels. Enzyme activity was assessed using phosphatidylcholine or phosphatidylethanol-amine labelled at sn position 2 with radioactive arachidonate. Phosphatidylethanolamine gave higher specific activities than phosphatidylcholine. The enzyme has an absolute requirement for Ca2+ and a pH optimum at 7.4. This pH optimum was more prominent for phosphatidylethanolamine. Activity was inhibited by oleate or arachidonate when phosphatidylcholine was used as substrate, but added free fatty acid did not significantly affect the hydrolysis of phosphatidylethanolamine. Addition of bovine serum albumin (fatty acid free) to assays increased the rate of release of arachidonate from phosphatidylcholine, but not from phosphatidylethanolamine. Phospholipase A2 is present in serum likely as a consequence of blood coagulation and may release fatty acids from cellular membranes following hemorrhage.Key words: phospholipase A2, phosphatidylcholine, phosphatidylethanolamine, rat serum.


2007 ◽  
Vol 189 (21) ◽  
pp. 7709-7719 ◽  
Author(s):  
Bettina Schiffler ◽  
Enrico Barth ◽  
Mamadou Daffé ◽  
Roland Benz

ABSTRACT The cell wall fraction of the gram-positive, nontoxic Corynebacterium diphtheriae strain C8r(−) Tox− (= ATCC 11913) contained a channel-forming protein, as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent-treated cell walls and in extracts of whole cells obtained using organic solvents. The protein had an apparent molecular mass of about 66 kDa as determined on Tricine-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and consisted of subunits having a molecular mass of about 5 kDa. Single-channel experiments with the purified protein suggested that the protein formed channels with a single-channel conductance of 2.25 nS in 1 M KCl. Further single-channel analysis suggested that the cell wall channel is wide and water filled because it has only slight selectivity for cations over anions and its conductance followed the mobility sequence of cations and anions in the aqueous phase. Antibodies raised against PorA, the subunit of the cell wall channel of Corynebacterium glutamicum, detected both monomers and oligomers of the isolated protein, suggesting that there are highly conserved epitopes in the cell wall channels of C. diphtheriae and PorA. Localization of the protein on the cell surface was confirmed by an enzyme-linked immunosorbent assay. The prospective homology of PorA with the cell wall channel of C. diphtheriae was used to identify the cell wall channel gene, cdporA, in the known genome of C. diphtheriae. The gene and its flanking regions were cloned and sequenced. CdporA is a protein that is 43 amino acids long and does not have a leader sequence. cdporA was expressed in a C. glutamicum strain that lacked the major outer membrane channels PorA and PorH. Organic solvent extracts of the transformed cells formed in lipid bilayer membranes the same channels as the purified CdporA protein of C. diphtheriae formed, suggesting that the expressed protein is able to complement the PorA and PorH deficiency of the C. glutamicum strain. The study is the first report of a cell wall channel in a pathogenic Corynebacterium strain.


2017 ◽  
Vol 8 (4) ◽  
pp. 635-643 ◽  
Author(s):  
V. Biscola ◽  
A. Rodriguez de Olmos ◽  
Y. Choiset ◽  
H. Rabesona ◽  
M.S. Garro ◽  
...  

Food allergies represent a serious problem affecting human health and soy proteins rank among the most allergenic proteins from food origin. The proteolytic enzymes produced by lactic acid bacteria (LAB) can hydrolyse the major allergens present in soybean, reducing their immunoreactivity. Many studies have reported the ability of LAB to ferment soy-based products; while the majority of them focus on the improvement of the sensory characteristics and functionality of soy proteins, a lack of information about the role of lactic fermentation in the reduction of immunoreactivity of these proteins exists. The aim of the present study was to evaluate the capability of the proteolytic strain Enterococcus faecalis VB43 to hydrolyse the main allergenic proteins present in soymilk and to determine the immunoreactivity of the obtained hydrolysates. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) results of fermented soymilk demonstrated complete hydrolysis of the β-subunit from β-conglycinin and the acidic polypeptide from glycinin. Reversed phase high performance liquid chromatography (RP-HPLC) analysis of the peptides released after hydrolysis revealed the appearance of new peptides and the disappearance of non-hydrolysed proteins, indicating extensive hydrolysis of the substrate. Results from competitive enzyme-linked immunosorbent assay (ELISA) tests clearly indicated a reduction in the immunoreactivity (more than one logarithmic unit) in the fermented sample as compared to the non-fermented control. Our results suggest that the soymilk fermented by E. faecalis VB43 may induce lower allergic responses in sensitive individuals. The strain E. faecalis VB43 may be considered as an excellent candidate to efficiently reduce the immunoreactivity of soymilk proteins.


2007 ◽  
Vol 74 (1) ◽  
pp. 130-135 ◽  
Author(s):  
André L. B. Crespo ◽  
Terence A. Spencer ◽  
Emily Nekl ◽  
Marianne Pusztai-Carey ◽  
William J. Moar ◽  
...  

ABSTRACT Standardization of toxin preparations derived from Bacillus thuringiensis (Berliner) used in laboratory bioassays is critical for accurately assessing possible changes in the susceptibility of field populations of target pests. Different methods were evaluated to quantify Cry1Ab, the toxin expressed by 80% of the commercially available transgenic maize that targets the European corn borer, Ostrinia nubilalis (Hübner). We compared three methods of quantification on three different toxin preparations from independent sources: enzyme-linked immunosorbent assay (ELISA), sodium dodecyl sulfate-polyacrylamide gel electrophoresis and densitometry (SDS-PAGE/densitometry), and the Bradford assay for total protein. The results were compared to those obtained by immunoblot analysis and with the results of toxin bioassays against susceptible laboratory colonies of O. nubilalis. The Bradford method resulted in statistically higher estimates than either ELISA or SDS-PAGE/densitometry but also provided the lowest coefficients of variation (CVs) for estimates of the Cry1Ab concentration (from 2.4 to 5.4%). The CV of estimates obtained by ELISA ranged from 12.8 to 26.5%, whereas the CV of estimates obtained by SDS-PAGE/densitometry ranged from 0.2 to 15.4%. We standardized toxin concentration by using SDS-PAGE/densitometry, which is the only method specific for the 65-kDa Cry1Ab protein and is not confounded by impurities detected by ELISA and Bradford assay for total protein. Bioassays with standardized Cry1Ab preparations based on SDS-PAGE/densitometry showed no significant differences in LC50 values, although there were significant differences in growth inhibition for two of the three Cry1Ab preparations. However, the variation in larval weight caused by toxin source was only 4% of the total variation, and we conclude that standardization of Cry1Ab production and quantification by SDS-PAGE/densitometry may improve data consistency in monitoring efforts to identify changes in insect susceptibility to Cry1Ab.


2009 ◽  
Vol 75 (14) ◽  
pp. 4661-4667 ◽  
Author(s):  
Alejandro Hernández-Soto ◽  
M. Cristina Del Rincón-Castro ◽  
Ana M. Espinoza ◽  
Jorge E. Ibarra

ABSTRACT Bacillus thuringiensis subsp. israelensis is the most widely used microbial control agent against mosquitoes and blackflies. Its insecticidal success is based on an arsenal of toxins, such as Cry4A, Cry4B, Cry11A, and Cyt1A, harbored in the parasporal crystal of the bacterium. A fifth toxin, Cry10Aa, is synthesized at very low levels; previous attempts to clone and express Cry10Aa were limited, and no parasporal body was formed. By using a new strategy, the whole Cry10A operon was cloned in the pSTAB vector, where both open reading frames ORF1 and ORF2 (and the gap between the two) were located, under the control of the cyt1A operon and the STAB-SD stabilizer sequence characteristic of this vector. Once the acrystalliferous mutant 4Q7 of B. thuringiensis subsp. israelensis was transformed with this construct, parasporal bodies were observed by phase-contrast microscopy and transmission electron microscopy. Discrete, ca. 0.9-μm amorphous parasporal bodies were observed in the mature sporangia, which were readily purified by gradient centrifugation once autolysis had occurred. Pure parasporal bodies showed two major bands of ca. 68 and 56 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. These bands were further characterized by N-terminal sequencing of tryptic fragments using matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis, which identified both bands as the products of ORF1 and ORF2, respectively. Bioassays against fourth-instar larvae of Aedes aegypti of spore-crystal complex and pure crystals of Cry10Aa gave estimated 50% lethal concentrations of 2,061 ng/ml and 239 ng/ml, respectively. Additionally, synergism was clearly detected between Cry10A and Cyt1A, as the synergistic levels (potentiation rates) were estimated at 13.3 for the mixture of Cyt1A crystals and Cry10Aa spore-crystal complex and 12.6 for the combination of Cyt1A and Cry10Aa pure crystals.


2006 ◽  
Vol 11 (5) ◽  
pp. 546-552 ◽  
Author(s):  
Jingyan Wei ◽  
Yang Liu ◽  
Songchuan Yang ◽  
Junjie Xu ◽  
Hangtian Kong ◽  
...  

A novel gene, testes-specific protease 50 ( TSP50), is abnormally activated and differentially expressed in most patients with breast cancer, suggesting it as a novel biomarker for this disease. The possibility that TSP50 may be an oncogene is presently under investigation. In this study, the single-chain variable fragments (scFvs) against TSP50 were panned from a phage display antibody library using TSP50-specific peptide, pep-50, as a target antigen. After 4 rounds of panning, 3 clones (A1, A11, and C8) from the library were verified to show strong binding affinities for TSP50 by enzyme-linked immunosorbent assay (ELISA) and to contain the variable region genes of the light and heavy chains of scFv antibodies but different complementary determining regions by sequencing. The genes of scFv-A1 and scFv-A11 were cloned into expression vector pPELB and successfully expressed as a soluble protein in Escherichia coli Rosetta. The yields of expressions were about 4.0 to 5.0 mg of protein from 1 L of culture. The expressed proteins were purified by a 2-step procedure consisting of ion-exchange chromatography, followed by immobilized metal affinity chromatography. The purified proteins were shown a single band at the position of 31 KDa on sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Sandwich ELISA demonstrated that the expressed scFv proteins were able to specifically react with pep-50, laying a foundation for the investigation of the function of TSP50 in the development and treatment of breast cancer.


2003 ◽  
Vol 49 (10) ◽  
pp. 625-632 ◽  
Author(s):  
Claudia Masini d'Avila-Levy ◽  
Rodrigo F Souza ◽  
Rosana C Gomes ◽  
Alane B Vermelho ◽  
Marta H Branquinha

Actively motile cells from a cured strain of Crithidia deanei released proteins in phosphate buffer (pH 7.4). The molecular mass of the released polypeptides, which included some proteinases, ranged from 19 to 116 kDa. One of the major protein bands was purified to homogeneity by a combination of anion-exchange and gel filtration chromatographs. The apparent molecular mass of this protein was estimated to be 62 kDa by sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS–PAGE). The incorporation of gelatin into SDS–PAGE showed that the purified protein presented proteolytic activity in a position corresponding to a molecular mass of 60 kDa. The enzyme was optimally active at 37 °C and pH 6.0 and showed 25% of residual activity at 28 °C for 30 min. The proteinase was inhibited by 1,10-phenanthroline and EDTA, showing that it belonged to the metalloproteinase class. A polyclonal antibody to the leishmanial gp63 reacted strongly with the released C. deanei protease. After Triton X-114 extraction, an enzyme similar to the purified metalloproteinase was detected in aqueous and detergent-rich phases. The detection of an extracellular metalloproteinase produced by C. deanei and some other Crithidia species suggests a potential role of this released enzyme in substrate degradation that may be relevant to the survival of trypanosomatids in the host.Key words: endosymbiont, trypanosomatid, extracellular, proteinase.


2009 ◽  
Vol 72 (12) ◽  
pp. 2524-2529 ◽  
Author(s):  
JINLAN ZHANG ◽  
GUORONG LIU ◽  
NAN SHANG ◽  
WANPENG CHENG ◽  
SHANGWU CHEN ◽  
...  

Pentocin 31-1, an anti-Listeria bacteriocin produced by Lactobacillus pentosus 31-1 from the traditional Chinese fermented Xuan-Wei ham, was successfully purified by the pH-mediated cell adsorption-desorption method and then purified by gel chromatography with Sephadex G-10. The purification resulted in a 1,381.9-fold increase in specific activity with a yield of 76.8% of the original activity. Using Tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), the molecular mass of the purified peptide was found to be between 3,500 and 6,400 Da, and bacteriocin activity was confirmed by overlayer techniques. When subjected to mass spectrometry analysis, the protein was highly pure and its molecular mass was 5,592.225 Da. The partial N-terminal sequence of pentocin 31-1 was the following: NH2-VIADYGNGVRXATLL. Compared with the sequence of other bacteriocins, pentocin 31-1 has the consensus sequence YGNGV in its N-terminal region, and therefore it belongs to the class IIa of bacteriocins.


2000 ◽  
Vol 66 (1) ◽  
pp. 252-256 ◽  
Author(s):  
Katsuichi Saito ◽  
Kazuya Kondo ◽  
Ichiro Kojima ◽  
Atsushi Yokota ◽  
Fusao Tomita

ABSTRACT Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a β-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH and temperature of the enzyme for levan degradation were pH 5.5 and 60°C, respectively. The enzyme was stable in the pH range 3.5 to 8.0 and also up to 50°C. The enzyme gave levanbiose as a major degradation product from levan in an exo-acting manner. It was also found that this enzyme catalyzed hydrolysis of such fructooligosaccharides as 1-kestose, nystose, and 1-fructosylnystose by liberating fructose. Thus, this enzyme appeared to hydrolyze not only β-2,6-linkage of levan, but also β-2,1-linkage of fructooligosaccharides. From these data, the enzyme from S. exfoliatus F3-2 was identified as a novel 2,6-β-d-fructan 6-levanbiohydrolase (EC 3.2.1.64 ).


Sign in / Sign up

Export Citation Format

Share Document