scholarly journals Corynebacterium diphtheriae: Identification and Characterization of a Channel-Forming Protein in the Cell Wall

2007 ◽  
Vol 189 (21) ◽  
pp. 7709-7719 ◽  
Author(s):  
Bettina Schiffler ◽  
Enrico Barth ◽  
Mamadou Daffé ◽  
Roland Benz

ABSTRACT The cell wall fraction of the gram-positive, nontoxic Corynebacterium diphtheriae strain C8r(−) Tox− (= ATCC 11913) contained a channel-forming protein, as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent-treated cell walls and in extracts of whole cells obtained using organic solvents. The protein had an apparent molecular mass of about 66 kDa as determined on Tricine-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and consisted of subunits having a molecular mass of about 5 kDa. Single-channel experiments with the purified protein suggested that the protein formed channels with a single-channel conductance of 2.25 nS in 1 M KCl. Further single-channel analysis suggested that the cell wall channel is wide and water filled because it has only slight selectivity for cations over anions and its conductance followed the mobility sequence of cations and anions in the aqueous phase. Antibodies raised against PorA, the subunit of the cell wall channel of Corynebacterium glutamicum, detected both monomers and oligomers of the isolated protein, suggesting that there are highly conserved epitopes in the cell wall channels of C. diphtheriae and PorA. Localization of the protein on the cell surface was confirmed by an enzyme-linked immunosorbent assay. The prospective homology of PorA with the cell wall channel of C. diphtheriae was used to identify the cell wall channel gene, cdporA, in the known genome of C. diphtheriae. The gene and its flanking regions were cloned and sequenced. CdporA is a protein that is 43 amino acids long and does not have a leader sequence. cdporA was expressed in a C. glutamicum strain that lacked the major outer membrane channels PorA and PorH. Organic solvent extracts of the transformed cells formed in lipid bilayer membranes the same channels as the purified CdporA protein of C. diphtheriae formed, suggesting that the expressed protein is able to complement the PorA and PorH deficiency of the C. glutamicum strain. The study is the first report of a cell wall channel in a pathogenic Corynebacterium strain.

2000 ◽  
Vol 182 (3) ◽  
pp. 764-770 ◽  
Author(s):  
Thomas Lichtinger ◽  
Gila Reiss ◽  
Roland Benz

ABSTRACT Organic solvent extracts of whole cells of the gram-positive bacterium Rhodococcus erythropolis contain a channel-forming protein. It was identified by lipid bilayer experiments and purified to homogeneity by preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). The pure protein had a rather low molecular mass of about 8.4 kDa, as judged by SDS-PAGE. SDS-resistant oligomers with a molecular mass of 67 kDa were also observed, suggesting that the channel is formed by a protein oligomer. The monomer was subjected to partial protein sequencing, and 45 amino acids were resolved. According to the partial sequence, the sequence has no significant homology to known protein sequences. To check whether the channel was indeed localized in the cell wall, the cell wall fraction was separated from the cytoplasmic membrane by sucrose step gradient centrifugation. The highest channel-forming activity was found in the cell wall fraction. The purified protein formed large ion-permeable channels in lipid bilayer membranes with a single-channel conductance of 6.0 nS in 1 M KCl. Zero-current membrane potential measurements with different salts suggested that the channel ofR. erythropolis was highly cation selective because of negative charges localized at the channel mouth. The correction of single-channel conductance data for negatively charged point charges and the Renkin correction factor suggested that the diameter of the cell wall channel is about 2.0 nm. The channel-forming properties of the cell wall channel of R. erythropolis were compared with those of other members of the mycolata. These channels have common features because they form large, water-filled channels that contain net point charges.


1999 ◽  
Vol 181 (18) ◽  
pp. 5838-5842 ◽  
Author(s):  
Jennifer L. Shannon ◽  
Rachel C. Fernandez

ABSTRACT BrkA is a 103-kDa outer membrane protein of Bordetella pertussis that mediates resistance to antibody-dependent killing by complement. It is proteolytically processed into a 73-kDa N-terminal domain and a 30-kDa C-terminal domain as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. BrkA is also a member of the autotransporter family of proteins. Translocation of the N-terminal domain of the protein across the outer membrane is hypothesized to occur through a pore formed by the C-terminal domain. To test this hypothesis, we performed black lipid bilayer experiments with purified recombinant protein. The BrkA C-terminal protein showed an average single-channel conductance of 3.0 nS in 1 M KCl. This result strongly suggests that the C-terminal autotransporter domain of BrkA is indeed capable of forming a pore.


1999 ◽  
Vol 45 (1) ◽  
pp. 23-30
Author(s):  
Somchai Santiwatanakul ◽  
Noel R Krieg

Autolytic activity in the soluble and sediment fractions of sonicates of the spiral and the coccoid form of Campylobacter upsaliensis could not be demonstrated by native (nondenaturing) polyacrylamide gel electrophoresis (PAGE). Autolysins were detected, however, by using denaturing sodium dodecyl sulfate (SDS) - PAGE gels containing either purified Escherichia coli peptidoglycan or whole cells of Micrococcus luteus (Micrococcus lysodeikticus) as the turbid substrate, with subsequent renaturation by treatment with Triton X-100 buffer. In renaturing gels that contained Escherichia coli peptidoglycan, 14 putative autolytic bands ranging from 200 to 12 kDa were detected. In similar gels containing whole cells of M. luteus, only a single band appeared with a molecular mass of 34 kDa. This band corresponded to one of the bands present in the gels containing Escherichia coli peptidoglycan. This common autolysin was isolated by adsorbing it from Campylobacter upsaliensis soluble fractions onto M. luteus cells and then subjecting these cells to renaturing SDS-PAGE in gels containing Escherichia coli peptidoglycan. The 34-kDa autolysin differed from a single 51-kDa autolysin unique to the M. luteus cells, and when isolated from an SDS-PAGE gel, was pure when tested by isoelectric focusing. The N-terminal amino acid sequence analysis showed the first 15 amino acids of the 34-kDa autolysin to have 67% identity to a part of antigenic protein PEB4 of Campylobacter jejuni. The purified autolysin was used to immunize rabbits and the antibodies produced precipitated autolytic activity from cell lysates. The specificity of the antibodies was shown by Western blotting: only a single specific band occurred, with a molecular mass of 34 kDa, and thus it seems unlikely that the 34-kDa autolysin was derived from any of the other autolysins that were detected.Key words: autolysin, Campylobacter upsaliensis, zymogram, murein hydrolase.


1986 ◽  
Vol 32 (2) ◽  
pp. 176-178 ◽  
Author(s):  
Raili Forsén ◽  
Teuvo Hentunen ◽  
Kaua Valkonen ◽  
Sirpa Kontusaari

Cell walls were isolated from mechanically disrupted cells of the slime-forming, encapsulated Streptococcus cremoris strains T5 and MLS96 by using sucrose gradient centrifugation as the last purification step. This cell wall isolation procedure was developed to obtain cell wall associated protein components. Sodium dodecyl sulfate – polyacrylamide gel electrophoresis revealed several polypeptide bands; the 50 kiloDalton band was major in strain T5 cell walls and the 26 and 30 kiloDalton bands were major in strain MLS96 cell walls. Both strains contained five antigenic polypeptides with molecular radius (Mr) values of 40, 47, 50, 54, and 70 kiloDaltons as analysed by immunoblotting and autoradiography. The polypeptides of strain MLS96 with molecular mass of 40 and 70 kiloDaltons reacted most strongly with homologous anti-whole cell serum. In addition, antigenic polypeptides with molecular mass of 100 and 160 kiloDaltons were also detected in strain T5.


1984 ◽  
Vol 224 (1) ◽  
pp. 59-66 ◽  
Author(s):  
A Franzén ◽  
D Heinegård

The proteoglycans characterized were those isolated from the calcified matrix of mature bovine bone [Franzén & Heinegård (1984) Biochem. J. 224, 47-58]. The average molecular mass of the bone proteoglycan is 74 600 Da, determined by sedimentation-equilibrium centrifugation in 4M-guanidinium chloride. Its sedimentation coefficient (s0(20),w) is 3.04 S. The apparent Mr of its core protein is 46 000, estimated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the chondroitinase ABC-digested proteoglycan. A more likely molecular mass of the core protein is 30 000 Da, as calculated from the molecular mass and the protein content (40%) of the proteoglycan. The bone proteoglycan contains one or probably two chondroitin sulphate chains each with a molecular mass (weight-average) of 33 700 Da and several oligosaccharides both of the N-glycosidically and the O-glycosidically linked type. Antibodies against the homogeneous bone proteoglycans were raised in rabbits. An e.l.i.s.a. (enzyme-linked immunosorbent assay) method was developed that allowed specific quantification of bone proteoglycans at nanogram levels. The specificity of the antibodies was tested by using the e.l.i.s.a. method. The bone proteoglycan showed partial cross-reactivity with the small proteoglycan of cartilage. The antibodies were used to localize immunoreactivity of bone proteoglycans by indirect immunofluorescence in frozen sections of foetal bovine epiphysial growth plate. The fluorescence was entirely found in the primary spongiosa, and no fluorescence was found among the hypertrophied chondrocytes or in the region of provisional calcification.


2003 ◽  
Vol 69 (7) ◽  
pp. 4111-4115 ◽  
Author(s):  
LanNa Lee ◽  
Deepak Saxena ◽  
G. Stotzky

ABSTRACT Bacillus thuringiensis subsp. israelensis produces parasporal insecticidal crystal proteins (ICPs) that have larvicidal activity against some members of the order Diptera, such as blackflies and mosquitoes. Hydrolysis of the ICPs in the larval gut results in four major proteins with a molecular mass of 27, 65, 128, and 135 kDa. Toxicity is caused by synergistic interaction between the 25-kDa protein (proteolytic product of the 27-kDa protein) and one or more of the higher-molecular-mass proteins. Equilibrium adsorption of the proteins on the clay minerals montmorillonite and kaolinite, which are homoionic to various cations, was rapid (<30 min for maximal adsorption), increased with protein concentration and then reached a plateau (68 to 96% of the proteins was adsorbed), was significantly lower on kaolinite than on montmorillonite, and was not significantly affected by the valence of the cation to which the clays were homoionic. Binding of the toxins decreased as the pH was increased from 6 to 11, and there was 35 to 66% more binding in phosphate buffer at pH 6 than in distilled water at pH 6 or 7.2. Only 2 to 12% of the adsorbed proteins was desorbed by two washes with water; additional washings desorbed no more toxins, indicating that they were tightly bound. Formation of clay-toxin complexes did not alter the structure of the proteins, as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the equilibrium supernatants and desorption washes and by dot blot enzyme-linked immunosorbent assay of the complexes, which was confirmed by enhanced chemiluminescence Western blot analysis. Free and clay-bound toxins resulted in 85 to 100% mortality of the mosquito Culex pipiens. Persistence of the bound toxins in nonsterile water after 45 days was significantly greater (mortality of 63% ± 12.7%) than that of the free toxins (mortality of 25% ± 12.5%).


1985 ◽  
Vol 63 (5) ◽  
pp. 366-371 ◽  
Author(s):  
C. V. Lusena ◽  
C. C. Champagne ◽  
G. B. Calleja

We define secretion as the passage from the cytoplasm, across the cell membrane, to the periplasmic space. By contrast, export is the passage across the cell wall into the medium. Operationally we distinguish the two processes by comparing the molecular species in the medium, in whole cells, and in spheroplasts. Two techniques make the task possible: complete spheroplast preparation and detection of activities in bands obtained by sodium dodecyl sulfate – polyacrylamide gel electrophoresis. The capability of Schwanniomyces alluvius to export α-amylase during stationary phase gradually increased with continual successive transfers from a slant culture to a liquid medium containing starch until a maximum was reached. Only cells which had developed full capability to export α-amylase were used in these studies. About 1 h after the end of the log phase of growth, α-amylase and glucoamylase start to be exported above constitutive levels and a concentration 10 times the constitutive level is reached 3 h later. Electrophoretic results show that at least three active molecular species of α-amylase appear in the cytoplasm at the end of log phase and that the smaller component (52 000 daltons) is secreted into the periplasm 0.5 h later and starts to be exported 1 h after that. The sequence of events suggests that the larger species are precursors of the 52 000 dalton molecules. Amylolytic activities in the cytoplasm and periplasm in late log phase are not detectable.


2000 ◽  
Vol 44 (9) ◽  
pp. 2349-2355 ◽  
Author(s):  
Patricia Soteropoulos ◽  
Tanya Vaz ◽  
Rosaria Santangelo ◽  
Padmaja Paderu ◽  
David Y. Huang ◽  
...  

ABSTRACT The Cryptococcus neoformans PMA1 gene, encoding a plasma membrane H+-ATPase, was isolated from a genomic DNA library of serotype A strain ATCC 6352. An open reading frame of 3,380 nucleotides contains six introns and encodes a predicted protein consisting of 998 amino acids with a molecular mass of approximately 108 kDa. Plasma membranes were isolated, and the H+-ATPase was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be slightly larger than the S. cerevisiaeH+-ATPase, consistent with its predicted molecular mass. The plasma membrane-bound enzyme exhibited a pH 6.5 optimum for ATP hydrolysis, Km and V maxvalues of 0.5 mM and 3.1 μmol mg−1 min−1, respectively, and an apparent Ki for vanadate inhibition of 1.6 μM. ATP hydrolysis in plasma membranes and medium acidification by whole cells were inhibited by ebselen, a nonspecific H+-ATPase antagonist which was also fungicidal. The predicted C. neoformans protein is 35% identical to proton pumps of both pathogenic and nonpathogenic fungi but exhibits more than 50% identity to PMA1 genes from plants. Collectively, this study provides the basis for establishing the CryptococcusH+-ATPase as a viable target for antifungal drug discovery.


2003 ◽  
Vol 185 (9) ◽  
pp. 2952-2960 ◽  
Author(s):  
Franziska G. Rieβ ◽  
Marion Elflein ◽  
Michael Benk ◽  
Bettina Schiffler ◽  
Roland Benz ◽  
...  

ABSTRACT We have identified in organic solvent extracts of whole cells of the gram-positive pathogen Rhodococcus equi two channel-forming proteins with different and complementary properties. The isolated proteins were able to increase the specific conductance of artificial lipid bilayer membranes made from phosphatidylcholine-phosphatidylserine mixtures by the formation of channels able to be permeated by ions. The channel-forming protein PorAReq (R. equi pore A) is characterized by the formation of cation-selective channels, which are voltage gated. PorAReq has a single-channel conductance of 4 nS in 1 M KCl and shows high permeability for positively charged solutes because of the presence of negative point charges. According to the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the protein has an apparent molecular mass of about 67 kDa. The analysis (using the effect of negative charges on channel conductance) of the concentration dependence of the single-channel conductance suggested that the diameter of the cell wall channel is about 2.0 nm. The second channel (formed by PorBReq [R. equi pore B]) shows a preferred movement of anions through the channel and is not voltage gated. This channel shows a single-channel conductance of 300 pS in 1 M KCl and is characterized by the presence of positive point charges in or near the channel mouth. Based on SDS-PAGE, the apparent molecular mass of the channel-forming protein is about 11 kDa. Channel-forming properties of the investigated cell wall porins were compared with those of others isolated from mycolic acid-containing actinomycetes. We present here the first report of a fully characterized anion-selective cell wall channel from a member of the order Actinomycetales.


1998 ◽  
Vol 180 (14) ◽  
pp. 3541-3547 ◽  
Author(s):  
Ryan H. Senaratne ◽  
Hamid Mobasheri ◽  
K. G. Papavinasasundaram ◽  
Peter Jenner ◽  
Edward J. A. Lea ◽  
...  

ABSTRACT An open reading frame in the genomic database ofMycobacterium tuberculosis H37Rv was identified as having homology with an outer membrane protein. We found that the gene specified a protein belonging to the OmpA family, which includes some porins of gram-negative organisms. The gene was amplified by PCR and cloned into Escherichia coli. Overexpression of the gene was toxic to the host, but limited amounts could be purified from cells before growth ceased. A truncated gene devoid of the code for a presumed signal sequence was well expressed, but the protein had no pore-forming activity in the liposome swelling assay. However, the intact protein, OmpATb, behaved as a porin of low specific activity, with a pore diameter of 1.4 to 1.8 nm, and was also active in planar lipid bilayers, showing a single-channel conductance of 700 pS. The protein had a molecular mass of about 38 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A polyclonal rabbit antiserum raised to the truncated protein recognized a protein of similar molecular mass in detergent extracts of broken M. tuberculosis cells. Reverse transcription-PCR confirmed that the gene for OmpATb was expressed in M. tuberculosis cells growing in culture. Comparison of the purified protein with that in the detergent-extracted preparation using liposomes and planar lipid bilayers showed that the two materials had similar pore-forming properties. OmpATb is different from either of the mycobacterial porins described so far. This is the first report of a porin-like molecule from M. tuberculosis; the porin is likely to be important in controlling the access of hydrophilic molecules to the bacterial cell.


Sign in / Sign up

Export Citation Format

Share Document