scholarly journals Bacterial Diversity in Agricultural Soils during Litter Decomposition

2004 ◽  
Vol 70 (1) ◽  
pp. 468-474 ◽  
Author(s):  
Oliver Dilly ◽  
Jaap Bloem ◽  
An Vos ◽  
Jean Charles Munch

ABSTRACT Denaturing gradient gel electrophoresis (DGGE) of amplified fragments of genes coding for 16S rRNA was used to study the development of bacterial communities during decomposition of crop residues in agricultural soils. Ten strains were tested, and eight of these strains produced a single band. Furthermore, a mixture of strains yielded distinguishable bands. Thus, DGGE DNA band patterns were used to estimate bacterial diversity. A field experiment performed with litter in nylon bags was used to evaluate the bacterial diversity during the decomposition of readily degradable rye and more refractory wheat material in comparable luvisols and cambisols in northern, central, and southern Germany. The amount of bacterial DNA in the fresh litter was small. The DNA content increased rapidly after the litter was added to the soil, particularly in the rapidly decomposing rye material. Concurrently, diversity indices, such as the Shannon-Weaver index, evenness, and equitability, which were calculated from the number and relative abundance (intensity) of the bacterial DNA bands amplified from genes coding for 16S rRNA, increased during the course of decomposition. This general trend was not significant for evenness and equitability at any time. The indices were higher for the more degradation-resistant wheat straw than for the more easily decomposed rye grass. Thus, the DNA band patterns indicated that there was increasing bacterial diversity as decomposition proceeded and substrate quality decreased. The bacterial diversity differed for the sites in northern, central, and southern Germany, where the same litter material was buried in the soil. This shows that in addition to litter type climate, vegetation, and indigenous microbes in the surrounding soil affected the development of the bacterial communities in the litter.

2012 ◽  
Vol 79 (1) ◽  
pp. 263-272 ◽  
Author(s):  
Anna M. Kielak ◽  
Mariana Silvia Cretoiu ◽  
Alexander V. Semenov ◽  
Søren J. Sørensen ◽  
Jan Dirk van Elsas

ABSTRACTChitin amendment is a promising soil management strategy that may enhance the suppressiveness of soil toward plant pathogens. However, we understand very little of the effects of added chitin, including the putative successions that take place in the degradative process. We performed an experiment in moderately acid soil in which the level of chitin, next to the pH, was altered. Examination of chitinase activities revealed fast responses to the added crude chitin, with peaks of enzymatic activity occurring on day 7. PCR-denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S rRNA andchiAgenes showed structural changes of the phylogenetically and functionally based bacterial communities following chitin addition and pH alteration. Pyrosequencing analysis indicated (i) that the diversity ofchiAgene types in soil is enormous and (i) that differentchiAgene types are selected by the addition of chitin at different prevailing soil pH values. Interestingly, a major role of Gram-negative bacteria versus a minor one ofActinobacteriain the immediate response to the added chitin (based on 16S rRNA gene abundance andchiAgene types) was indicated. The results of this study enhance our understanding of the response of the soil bacterial communities to chitin and are of use for both the understanding of soil suppressiveness and the possible mining of soil for novel enzymes.


2010 ◽  
Vol 56 (4) ◽  
pp. 352-355 ◽  
Author(s):  
Junmin Li ◽  
Zexin Jin ◽  
Binbin Yu

To explore changes in the structure and diversity of activated sludge-derived microbial communities during adaptation to gradual increases in the concentration of wastewater, RAPD–PCR and the combination of PCR amplification of 16S rRNA genes with denaturing gradient gel electrophoresis (DGGE) analysis were used. In bacterial communities exposed to 0%, 5%, 10%, 20%, or 40% wastewater, there were 27, 25, 18, 17 and 16 bands, respectively, based on DGGE data, while there were 69, 83, 97, 86, and 88 bands, respectively, based on RAPD data. The community similarity index among bacterial communities during the process of adaptation to different concentrations of wastewater was different based on DGGE and RAPD data. Based on DGGE and RAPD profiles, the Shannon–Weiner and Simpson’s diversity indices decreased sharply upon exposure to 10% wastewater, indicating that 10% wastewater might be a critical point at which the growth of bacteria could be significantly inhibited and the genotypic diversity could change. This indicated that changes in structure and diversity might have an inhibitory effect on the toxicity of organic matter and that selection and adaptation could play important roles in the changes.


2008 ◽  
Vol 54 (12) ◽  
pp. 996-1005 ◽  
Author(s):  
Dulcecleide B. Freitas ◽  
Mariana P. Reis ◽  
Leandro M. Freitas ◽  
Paulo S. Assis ◽  
Edmar Chartone-Souza ◽  
...  

We characterized the bacterial diversity of newly produced steelmaking wastes (NPSW) and steelmaking wastes deposited (SWD) in a restricted land area, generated by the siderurgic industry, using the 16S rDNA clone library approach. A total of 212 partial-length sequences were analyzed, revealing 123 distinct operational taxonomic units (OTUs) determined by the DOTUR program to 97% sequence similarity. Phylogenetic analysis of bacterial 16S rDNA sequences from the NPSW and SWD libraries demonstrated that Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Planctomycetes, Firmicutes, and Bacteroidetes were represented in both libraries. Deltaproteobacteria, Acidobacteria, Chloroflexi, Deinococcus-thermus, Gemmatimonadetes, and candidate divisions OP10 and OD1 were only present in the SWD library, and Nitrospira was only present in the NPSW library. The abundance of sequences affiliated with Gammaproteobacteria was high in both libraries. Six previously unclassified OTUs may represent novel taxa. Based on diversity indices (Simpson, Shannon–Weaver, Chao1, and ACE), the SWD library had a higher diversity. LIBSHUFF comparisons of the composition of the 2 libraries showed that they were significantly different. These results indicate that the bacterial communities in steelmaking wastes present high phylogenetic diversity and complexity. A possible association between the functional diversity and the bacterial communities’ complexity requires further phenotypic investigation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chawki Bisker ◽  
Gillian Taylor ◽  
Helen Carney ◽  
Theresia Komang Ralebitso-Senior

Introducing animal carbon-source to soil initiates biochemical and microbial processes that lead to its decomposition and recycling, which subsequently cause successional shifts in soil microbial community. To investigate the use of soil microbial community to inform criminal investigation, this study was designed to mimic clandestine graves. It compared the decomposition of stillborn piglets (Sus scrofa domesticus), as human analogues, to oak (Quercus robur) leaf litter and soil-only controls outdoors for 720 days. Environmental and edaphic parameters were monitored and showed soil microbial community alignment with temperature seasonality, which highlighted the importance of this abiotic factor. Denaturing gradient gel electrophoresis (DGGE) data were used to calculate Hill numbers and diversity indices of the bacterial 16S rRNA community did not distinguish mammalian- from plant-based decomposition consistently during the first or second year of the study. In contrast, the fungal 18S rRNA community allowed clear differentiation between different treatments (beta diversity) throughout the 720-day experiment and suggested the moment of the decomposing mammalian skin rupture. 16S rRNA-based NGS facilitated the identification of e.g., Pirellulaceae, Acidobacteria ii1-15_order and Candidatus xiphinematobacter as Year 2 bacterial markers of gravesoil at family, order and species taxonomic levels, respectively, and confirmed the similarity of the calculated Hill diversity metrics with those derived from DGGE profiling. Parallel soil elemental composition was measured by portable X-ray Fluorescence where calcium profiles for the piglet-associated soils were distinct from those without carrion. Also, soil calcium content and PMI correlated positively during the first year then negatively during the second. This study is one of the first to apply a multidisciplinary approach based on molecular and physicochemical analytical techniques to assess decomposition. It highlights the recognised potential of using soil microbial community in forensic investigations and provides a proof-of-concept for the application of a combined molecular and elemental approach to further understand the dynamics of decomposition. In addition, it sets the scene for further research in different conditions based on Hill numbers metrics instead of the classic ecological indices for soil necrobiome richness, diversity and evenness.


2016 ◽  
Vol 62 (12) ◽  
pp. 1021-1033 ◽  
Author(s):  
Chorng-Horng Lin ◽  
Chih-Hsiang Chuang ◽  
Wen-Hung Twan ◽  
Shu-Fen Chiou ◽  
Tit-Yee Wong ◽  
...  

We compared the bacterial communities associated with healthy scleractinian coral Porites sp. with those associated with coral infected with pink spot syndrome harvested during summer and winter from waters off the coast of southern Taiwan. Members of the bacterial community associated with the coral were characterized by means of denaturing gradient gel electrophoresis (DGGE) of a short region of the 16S rRNA gene and clone library analysis. Of 5 different areas of the 16S rRNA gene, we demonstrated that the V3 hypervariable region is most suited to represent the coral-associated bacterial community. The DNA sequences of 26 distinct bands extracted from DGGE gels and 269 sequences of the 16S rRNA gene from clone libraries were determined. We found that the communities present in diseased coral were more heterogeneous than the bacterial communities of uninfected coral. In addition, bacterial communities associated with coral harvested in the summer were more diverse than those associated with coral collected in winter, regardless of the health status of the coral. Our study suggested that the compositions of coral-associated bacteria communities are complex, and the population of bacteria varies greatly between seasons and in coral of differing health status.


2017 ◽  
Author(s):  
Leah Cuthbertson ◽  
Vanessa Craven ◽  
Lynne Bingle ◽  
William O.C.M. Cookson ◽  
Mark L. Everard ◽  
...  

AbstractPersistent bacterial bronchitis is a leading cause of chronic wet cough in young children. This study aimed to characterise the respiratory bacterial microbiota of healthy children and to assess the impact of the changes associated with the development of persistent bacterial bronchitis.Blind, protected brushings were obtained from 20 healthy controls and 24 children with persistent bacterial bronchitis, with an additional directed sample obtained from persistent bacterial bronchitis patients. DNA was extracted, quantified using a 16S rRNA gene quantitative PCR assay prior to microbial community analysis by 16S rRNA gene sequencing.No significant difference in bacterial diversity or community composition (R2 = 0.01, P = 0.36) was observed between paired blind and non-blind brushes, showing that blind brushings are a valid means of accessing the airway microbiota. This has important implications for collecting lower respiratory samples from healthy children. A significant decrease in bacterial diversity (P < 0.001) and change in community composition (R2 = 0.08, P = 0.004) was observed between controls and patients. Bacterial communities within patients with PBB were dominated by Proteobacteria, and indicator species analysis showed that Haemophilus and Neisseria were significantly associated with the patient group. In 15 (52.9%) cases the dominant organism by sequencing was not identified by standard routine clinical culture.The bacteria present in the lungs of patients with persistent bacterial bronchitis were less diverse in terms of richness and evenness. The results validate the clinical diagnosis, and suggest that more attention to bacterial communities in children with chronic cough may lead to more rapid recognition of this condition with earlier treatment and reduction in disease burden.


2006 ◽  
Vol 52 (3) ◽  
pp. 246-259 ◽  
Author(s):  
Christopher L Ball ◽  
Ronald L Crawford

Culture and molecular methods were used to describe the planktonic bacterial diversity of an artesian water supply in rural Latah County, Idaho, within the drainage of a small perennial stream, Thorn Creek. The surrounding depth to groundwater at this location is thought to be significant (>100 m), and this transitional zone (basalt–granite) of the Palouse aquifer system is little studied. The water produced by this artesian source is consistent even in years of drought and is of high quality, both mineralogically and microbiologically. A culture-based analysis using 30 media types and four incubation temperatures demonstrated that several metabolic types were present in the water. 16S rRNA gene fragments amplified from the DNA of pooled cultured cells and from the DNA extracted from 1 L of the source water were compared using denaturing gradient gel electrophoresis. The results indicated that the two DNA samples did not have similar 16S rRNA gene compositions and that several uncultured phyla were present in the community DNA sample. These results indicated that large-scale culturing did not accurately represent the structure planktonic community. 16S rRNA gene sequences from 17 different genera were obtained from the community DNA sample; the most abundant were similar to Rhodoferax, Rhodobacter, and Polaromonas species. Sequences related to the Proteo bacteria, Bacteroidetes/Chlorobi, Firmicutes, and Acidobacterium/Fibrobacter divisions were also detected.Key words: artesian spring, bacterial diversity, DGGE, 16S rRNA, enrichment culture.


Sign in / Sign up

Export Citation Format

Share Document