scholarly journals Aquatic Snails, Passive Hosts of Mycobacterium ulcerans

2004 ◽  
Vol 70 (10) ◽  
pp. 6296-6298 ◽  
Author(s):  
Laurent Marsollier ◽  
Tchibozo Sévérin ◽  
Jacques Aubry ◽  
Richard W. Merritt ◽  
Jean-Paul Saint André ◽  
...  

ABSTRACT Accumulative indirect evidence of the epidemiology of Mycobacterium ulcerans infections causing chronic skin ulcers (i.e., Buruli ulcer disease) suggests that the development of this pathogen and its transmission to humans are related predominantly to aquatic environments. We report that snails could transitorily harbor M. ulcerans without offering favorable conditions for its growth and replication. A novel intermediate link in the transmission chain of M. ulcerans becomes likely with predator aquatic insects in addition to phytophage insects. Water bugs, such as Naucoris cimicoides, a potential vector of M. ulcerans, were shown to be infected specifically by this bacterium after feeding on snails experimentally exposed to M. ulcerans.

2020 ◽  
Vol 6 (9) ◽  
pp. eaax7781 ◽  
Author(s):  
Mélanie Foulon ◽  
Amélie Pouchin ◽  
Jérémy Manry ◽  
Fida Khater ◽  
Marie Robbe-Saule ◽  
...  

Buruli ulcer, a neglected tropical infectious disease, is caused by Mycobacterium ulcerans. Without treatment, its lesions can progress to chronic skin ulcers, but spontaneous healing is observed in 5% of cases, suggesting the possible establishment of a host strategy counteracting the effects of M. ulcerans. We reveal here a skin-specific local humoral signature of the spontaneous healing process, associated with a rise in antibody-producing cells and specific recognition of mycolactone by the mouse IgG2a immunoglobulin subclass. We demonstrate the production of skin-specific antibodies neutralizing the immunomodulatory activity of the mycolactone toxin, and confirm the role of human host machinery in triggering effective local immune responses by the detection of anti-mycolactone antibodies in patients with Buruli ulcer. Our findings pave the way for substantial advances in both the diagnosis and treatment of Buruli ulcer in accordance with the most recent challenges issued by the World Health Organization.


2002 ◽  
Vol 68 (9) ◽  
pp. 4623-4628 ◽  
Author(s):  
Laurent Marsollier ◽  
Raymond Robert ◽  
Jacques Aubry ◽  
Jean-Paul Saint André ◽  
Henri Kouakou ◽  
...  

ABSTRACT Mycobacterium ulcerans is an emerging environmental pathogen which causes chronic skin ulcers (i.e., Buruli ulcer) in otherwise healthy humans living in tropical countries, particularly those in Africa. In spite of epidemiological and PCR data linking M. ulcerans to water, the mode of transmission of this organism remains elusive. To determine the role of aquatic insects in the transmission of M. ulcerans, we have set up an experimental model with aquariums that mimic aquatic microenvironments. We report that M. ulcerans may be transmitted to laboratory mice by the bite of aquatic bugs (Naucoridae) that are infected with this organism. In addition, M. ulcerans appears to be localized exclusively within salivary glands of these insects, where it can both survive and multiply without causing any observable damage in the insect tissues. Subsequently, we isolated M. ulcerans from wild aquatic insects collected from a zone in the Daloa region of Ivory Coast where Buruli ulcer is endemic. Taken together, these results point to aquatic insects as a possible vector of M. ulcerans.


Author(s):  
Andes Garchitorena ◽  
Matthew H. Bonds ◽  
Jean-Francois Guégan ◽  
Benjamin Roche

This chapter provides an overview of the complex interactions between ecological and socioeconomic factors for the development and control of Buruli ulcer in Sub-Saharan Africa. We review key ecological and evolutionary processes driving the environmental persistence and proliferation of Mycobacterium ulcerans, the causative agent, within aquatic environments, as well as transmission processes from these aquatic environments to human populations. We also outline key socioeconomic factors driving the economic and health burden of Buruli ulcer in endemic regions, revealed by reciprocal feedbacks between poverty, disease transmission from exposure aquatic environments and disease progression to severe stages owing to low access to health care. The implications of such insights for disease control, both in terms of limitations of current strategies and directions for the future, are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bruno Tello Rubio ◽  
Florence Bugault ◽  
Blandine Baudon ◽  
Bertrand Raynal ◽  
Sébastien Brûlé ◽  
...  

Mycolactone is a diffusible lipid toxin produced by Mycobacterium ulcerans, the causative agent of Buruli ulcer disease. Altough bacterially derived mycolactone has been shown to traffic from cutaneous foci of infection to the bloodstream, the mechanisms underpinning its access to systemic circulation and import by host cells remain largely unknown. Using biophysical and cell-based approaches, we demonstrate that mycolactone specific association to serum albumin and lipoproteins is necessary for its solubilization and is a major mechanism to regulate its bioavailability. We also demonstrate that Scavenger Receptor (SR)-B1 contributes to the cellular uptake of mycolactone. Overall, we suggest a new mechanism of transport and cell entry, challenging the dogma that the toxin enters host cells via passive diffusion.


2008 ◽  
Vol 76 (5) ◽  
pp. 2002-2007 ◽  
Author(s):  
Junichiro En ◽  
Masamichi Goto ◽  
Kazue Nakanaga ◽  
Michiyo Higashi ◽  
Norihisa Ishii ◽  
...  

ABSTRACT Buruli ulcer is a chronic skin disease caused by Mycobacterium ulcerans, which produces a toxic lipid mycolactone. Despite the extensive necrosis and tissue damage, the lesions are painless. This absence of pain prevents patients from seeking early treatment and, as a result, many patients experience severe sequelae, including limb amputation. We have reported that mice inoculated with M. ulcerans show loss of pain sensation and nerve degeneration. However, the molecules responsible for the nerve damage have not been identified. In order to clarify whether mycolactone alone can induce nerve damage, mycolactone A/B was injected to footpads of BALB/c mice. A total of 100 μg of mycolactone induced footpad swelling, redness, and erosion. The von Frey sensory test showed hyperesthesia on day 7, recovery on day 21, and hypoesthesia on day 28. Histologically, the footpads showed epidermal erosion, moderate stromal edema, and moderate neutrophilic infiltration up to day 14, which gradually resolved. Nerve bundles showed intraneural hemorrhage, neutrophilic infiltration, and loss of Schwann cell nuclei on days 7 and 14. Ultrastructurally, vacuolar change of myelin started on day 14 and gradually subsided by day 42, but the density of myelinated fibers remained low. This study demonstrated that initial hyperesthesia is followed by sensory recovery and final hypoesthesia. Our present study suggests that mycolactone directly damages nerves and is responsible for the absence of pain characteristic of Buruli ulcer. Furthermore, mice injected with 200 μg of mycolactone showed pulmonary hemorrhage. This is the first study to demonstrate the systemic effects of mycolactone.


EcoHealth ◽  
2014 ◽  
Vol 11 (2) ◽  
pp. 184-196 ◽  
Author(s):  
Mollie McIntosh ◽  
Heather Williamson ◽  
M. Eric Benbow ◽  
Ryan Kimbirauskas ◽  
Charles Quaye ◽  
...  

2021 ◽  
Author(s):  
Hyun Kim ◽  
Shigtarou Mori ◽  
Tsuyoshi Kenri ◽  
Yasuhiko Suzuki

ABSTRACTBuruli ulcer disease is a neglected necrotizing and disabling cutaneous tropical illness caused by Mycobacterium ulcerans (Mul). Fluoroquinolone (FQ), used in the treatment of this disease, has been known to act by inhibiting the enzymatic activities of DNA gyrase; however, the detailed molecular basis of these characteristics and the FQ resistance mechanisms in Mul remains unknown. This study investigated the detailed molecular mechanism of Mul DNA gyrase and the contribution of FQ resistance in vitro using recombinant proteins from the Mul subsp. shinshuense and Agy99 strains with reduced sensitivity to FQs. The IC50 of FQs against Ala91Vla and Asp95Gly mutants of Mul shinshuense and Agy99 GyrA subunits were 3.7- to 42.0-fold higher than those against wild-type enzyme. Similarly, the CC25 was 10- to 210-fold higher than those for the WT enzyme. Furthermore, the interaction between the amino acid residues of WT/mutant Mul DNA gyrase and FQ side chains was assessed via molecular docking studies. This is the first detailed study showing the contribution of Mul DNA GyrA subunit mutations to reduce the susceptibility against FQs.


2017 ◽  
Vol 11 (2) ◽  
pp. e0005415 ◽  
Author(s):  
Norman Nausch ◽  
Daniel Antwi-Berko ◽  
Yusif Mubarik ◽  
Kabiru Mohammed Abass ◽  
Wellington Owusu ◽  
...  

2015 ◽  
Vol 18 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Fred Stephen Sarfo ◽  
Richard Phillips ◽  
Mark Wansbrough‐Jones ◽  
Rachel E. Simmonds

Sign in / Sign up

Export Citation Format

Share Document