scholarly journals Overproduction of Heterologous Mannitol 1-Phosphatase: a Key Factor for Engineering Mannitol Production by Lactococcus lactis

2005 ◽  
Vol 71 (3) ◽  
pp. 1507-1514 ◽  
Author(s):  
H. Wouter Wisselink ◽  
Antoine P. H. A. Moers ◽  
Astrid E. Mars ◽  
Marcel H. N. Hoefnagel ◽  
Willem M. de Vos ◽  
...  

ABSTRACT To achieve high mannitol production by Lactococcus lactis, the mannitol 1-phosphatase gene of Eimeria tenella and the mannitol 1-phosphate dehydrogenase gene mtlD of Lactobacillus plantarum were cloned in the nisin-dependent L. lactis NICE overexpression system. As predicted by a kinetic L. lactis glycolysis model, increase in mannitol 1-phosphate dehydrogenase and mannitol 1-phosphatase activities resulted in increased mannitol production. Overexpression of both genes in growing cells resulted in glucose-mannitol conversions of 11, 21, and 27% by the L. lactis parental strain, a strain with reduced phosphofructokinase activity, and a lactate dehydrogenase-deficient strain, respectively. Improved induction conditions and increased substrate concentrations resulted in an even higher glucose-to-mannitol conversion of 50% by the lactate dehydrogenase-deficient L. lactis strain, close to the theoretical mannitol yield of 67%. Moreover, a clear correlation between mannitol 1-phosphatase activity and mannitol production was shown, demonstrating the usefulness of this metabolic engineering approach.

2004 ◽  
Vol 70 (7) ◽  
pp. 4286-4292 ◽  
Author(s):  
H. Wouter Wisselink ◽  
Astrid E. Mars ◽  
Pieter van der Meer ◽  
Gerrit Eggink ◽  
Jeroen Hugenholtz

ABSTRACT To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance liquid chromatography and 13C nuclear magnetic resonance analysis revealed that small amounts (<1%) of mannitol were formed by growing cells of mtlD-overexpressing LDH-deficient and phosphofructokinase-reduced strains, whereas resting cells of the LDH-deficient transformant converted 25% of glucose into mannitol. Moreover, the formed mannitol was not reutilized upon glucose depletion. Of the metabolic-engineering strategies investigated in this work, mtlD-overexpressing LDH-deficient L. lactis seemed to be the most promising strain for mannitol production.


2004 ◽  
Vol 70 (3) ◽  
pp. 1466-1474 ◽  
Author(s):  
Paula Gaspar ◽  
Ana Rute Neves ◽  
Ana Ramos ◽  
Michael J. Gasson ◽  
Claire A. Shearman ◽  
...  

ABSTRACT Mannitol is a sugar polyol claimed to have health-promoting properties. A mannitol-producing strain of Lactococcus lactis was obtained by disruption of two genes of the phosphoenolpyruvate (PEP)-mannitol phosphotransferase system (PTSMtl). Genes mtlA and mtlF were independently deleted by double-crossover recombination in strain L. lactis FI9630 (a food-grade lactate dehydrogenase-deficient strain derived from MG1363), yielding two mutant (ΔldhΔmtlA and ΔldhΔmtlF) strains. The new strains, FI10091 and FI10089, respectively, do not possess any selection marker and are suitable for use in the food industry. The metabolism of glucose in nongrowing cell suspensions of the mutant strains was characterized by in vivo 13C-nuclear magnetic resonance. The intermediate metabolite, mannitol-1-phosphate, accumulated intracellularly to high levels (up to 76 mM). Mannitol was a major end product, one-third of glucose being converted to this hexitol. The double mutants, in contrast to the parent strain, were unable to utilize mannitol even after glucose depletion, showing that mannitol was taken up exclusively by PEP-PTSMtl. Disruption of this system completely blocked mannitol transport in L. lactis, as intended. In addition to mannitol, approximately equimolar amounts of ethanol, 2,3-butanediol, and lactate were produced. A mixed-acid fermentation (formate, ethanol, and acetate) was also observed during growth under controlled conditions of pH and temperature, but mannitol production was low. The reasons for the alteration in the pattern of end products under nongrowing and growing conditions are discussed, and strategies to improve mannitol production during growth are proposed.


2013 ◽  
Vol 12 (1) ◽  
pp. 166 ◽  
Author(s):  
Hyun-Il Shin ◽  
Jung-Yeon Kim ◽  
Won-Ja Lee ◽  
Youngjoo Sohn ◽  
Sang-Wook Lee ◽  
...  

2009 ◽  
Vol 75 (15) ◽  
pp. 5175-5178 ◽  
Author(s):  
Kenji Okano ◽  
Shogo Yoshida ◽  
Tsutomu Tanaka ◽  
Chiaki Ogino ◽  
Hideki Fukuda ◽  
...  

ABSTRACT Optically pure d-lactic acid fermentation from arabinose was achieved by using the Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase gene was substituted with a heterologous transketolase gene. After 27 h of fermentation, 38.6 g/liter of d-lactic acid was produced from 50 g/liter of arabinose.


2019 ◽  
Vol 59 ◽  
pp. 1-7 ◽  
Author(s):  
Amanda Y van Tilburg ◽  
Haojie Cao ◽  
Sjoerd B van der Meulen ◽  
Ana Solopova ◽  
Oscar P Kuipers

2005 ◽  
Vol 71 (2) ◽  
pp. 1109-1113 ◽  
Author(s):  
Roger S. Bongers ◽  
Marcel H. N. Hoefnagel ◽  
Michiel Kleerebezem

ABSTRACT Efficient conversion of glucose to acetaldehyde is achieved by nisin-controlled overexpression of Zymomonas mobilis pyruvate decarboxylase (pdc) and Lactococcus lactis NADH oxidase (nox) in L. lactis. In resting cells, almost 50% of the glucose consumed could be redirected towards acetaldehyde by combined overexpression of pdc and nox under anaerobic conditions.


Sign in / Sign up

Export Citation Format

Share Document