Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions.

1995 ◽  
Vol 61 (11) ◽  
pp. 3967-3971 ◽  
Author(s):  
C Platteeuw ◽  
J Hugenholtz ◽  
M Starrenburg ◽  
I van Alen-Boerrigter ◽  
W M de Vos
2005 ◽  
Vol 71 (3) ◽  
pp. 1507-1514 ◽  
Author(s):  
H. Wouter Wisselink ◽  
Antoine P. H. A. Moers ◽  
Astrid E. Mars ◽  
Marcel H. N. Hoefnagel ◽  
Willem M. de Vos ◽  
...  

ABSTRACT To achieve high mannitol production by Lactococcus lactis, the mannitol 1-phosphatase gene of Eimeria tenella and the mannitol 1-phosphate dehydrogenase gene mtlD of Lactobacillus plantarum were cloned in the nisin-dependent L. lactis NICE overexpression system. As predicted by a kinetic L. lactis glycolysis model, increase in mannitol 1-phosphate dehydrogenase and mannitol 1-phosphatase activities resulted in increased mannitol production. Overexpression of both genes in growing cells resulted in glucose-mannitol conversions of 11, 21, and 27% by the L. lactis parental strain, a strain with reduced phosphofructokinase activity, and a lactate dehydrogenase-deficient strain, respectively. Improved induction conditions and increased substrate concentrations resulted in an even higher glucose-to-mannitol conversion of 50% by the lactate dehydrogenase-deficient L. lactis strain, close to the theoretical mannitol yield of 67%. Moreover, a clear correlation between mannitol 1-phosphatase activity and mannitol production was shown, demonstrating the usefulness of this metabolic engineering approach.


2019 ◽  
Vol 59 ◽  
pp. 1-7 ◽  
Author(s):  
Amanda Y van Tilburg ◽  
Haojie Cao ◽  
Sjoerd B van der Meulen ◽  
Ana Solopova ◽  
Oscar P Kuipers

2005 ◽  
Vol 71 (2) ◽  
pp. 1109-1113 ◽  
Author(s):  
Roger S. Bongers ◽  
Marcel H. N. Hoefnagel ◽  
Michiel Kleerebezem

ABSTRACT Efficient conversion of glucose to acetaldehyde is achieved by nisin-controlled overexpression of Zymomonas mobilis pyruvate decarboxylase (pdc) and Lactococcus lactis NADH oxidase (nox) in L. lactis. In resting cells, almost 50% of the glucose consumed could be redirected towards acetaldehyde by combined overexpression of pdc and nox under anaerobic conditions.


2020 ◽  
Vol 7 (4) ◽  
pp. 135
Author(s):  
Jan Niklas Bröker ◽  
Boje Müller ◽  
Dirk Prüfer ◽  
Christian Schulze Gronover

Farnesyl diphosphate (FPP)-derived isoprenoids represent a diverse group of plant secondary metabolites with great economic potential. To enable their efficient production in the heterologous host Saccharomyces cerevisiae, we refined a metabolic engineering strategy using the CRISPR/Cas9 system with the aim of increasing the availability of FPP for downstream reactions. The strategy included the overexpression of mevalonate pathway (MVA) genes, the redirection of metabolic flux towards desired product formation and the knockout of genes responsible for competitive reactions. Following the optimisation of culture conditions, the availability of the improved FPP biosynthesis for downstream reactions was demonstrated by the expression of a germacrene synthase from dandelion. Subsequently, biosynthesis of significant amounts of germacrene-A was observed in the most productive strain compared to the wild type. Thus, the presented strategy is an excellent tool to increase FPP-derived isoprenoid biosynthesis in yeast.


2004 ◽  
Vol 70 (3) ◽  
pp. 1843-1846 ◽  
Author(s):  
Ed W. J. van Niel ◽  
Johan Palmfeldt ◽  
Rani Martin ◽  
Marco Paese ◽  
B�rbel Hahn-H�gerdal

ABSTRACT Lactococcal lactate dehydrogenases (LDHs) are coregulated at the substrate level by at least two mechanisms: the fructose-1,6-biphosphate/phosphate ratio and the NADH/NAD ratio. Among the Lactococcus lactis species, there are strains that are predominantly regulated by the first mechanism (e.g., strain 65.1) or by the second mechanism (e.g., strain NCDO 2118). A more complete model of the kinetics of the regulation of lactococcal LDH is discussed.


2000 ◽  
Vol 66 (12) ◽  
pp. 5518-5520 ◽  
Author(s):  
Christophe Monnet ◽  
Fr�d�ric Aymes ◽  
Georges Corrieu

ABSTRACT Lactococcus lactis subsp. lactis biovar diacetylactis strains are utilized in several industrial processes for producing the flavoring compound diacetyl or its precursor α-acetolactate. Using random mutagenesis with nitrosoguanidine, we selected mutants that were deficient in α-acetolactate decarboxylase and had low lactate dehydrogenase activity. The mutants produced large amounts of α-acetolactate in anaerobic milk cultures but not in aerobic cultures, except when the medium was supplemented with catalase, yeast extract, or hemoglobin.


Sign in / Sign up

Export Citation Format

Share Document