scholarly journals Relationship between Bacterioplankton Richness, Respiration, and Production in the Southern North Sea

2005 ◽  
Vol 71 (5) ◽  
pp. 2260-2266 ◽  
Author(s):  
Thomas Reinthaler ◽  
Christian Winter ◽  
Gerhard J. Herndl

ABSTRACT We investigated the relationship between bacterioplankton production (BP), respiration (BR), and community composition measured by terminal restriction fragment length polymorphism in the southern North Sea over a seasonal cycle. Major changes in bacterioplankton richness were apparent from April to December. While cell-specific BP decreased highly significantly with increasing bacterioplankton richness, cell-specific BR was found to be variable along the richness gradient, suggesting that bacterioplankton respiration is rather independent from shifts in the bacterial community composition. As a consequence, the bacterial growth efficiency [BGE = BP/(BP + BR)] was negatively related to bacterioplankton richness, explaining ∼43% of the variation in BGE. Our results indicate that despite the observed shifts in the community composition, the main function of the bacterioplankton, the remineralization of dissolved organic carbon to CO2, is rather stable.

2021 ◽  
Author(s):  
Chiaki Motegi ◽  
Yvan Bettarel ◽  
Aurélie Dufour ◽  
Xavier Mari ◽  
Christophe Migon ◽  
...  

<p>The basic bacterial ecology and diversity was investigated in five running water systems of Southern New Caledonia. These running waters were characterized by potential P-limitation and high concentrations of Ni, Fe, Mn, Cr and Co. The low concentrations of dissolved organic carbon, bacterial and viral abundance, bacterial production and growth efficiency support the characterization of the running waters as oligotroph to ultraoligotroph. Despite these similarities, there were strong differences (<50% similarity) in bacterial community composition between some habitats based on 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE) fingerprints. The high coverage of sequenced DGGE bands found for <em>Betaproteobacteria</em> is typical for freshwater systems, however, we found also a strong representation of <em>Gammaproteobacteria</em>. Indeed the three bands found at all stations were related to <em>Limnohabitans</em> (<em>Comamonadaceae</em>) and <em>Alteromonadaceae</em>. Strong differences were also found between the free-living and the attached bacterial fraction with <em>Gammaproteobacteria </em>dominating in two systems. A higher representation of <em>Gammaproteobacteria </em>seems typical for metal-rich freshwater habitats. Consistent with fresh water habitats, majority of phylotypes detected in the sediment was affiliated to proteobacteria. Also, none of the sequences showed a 100% identity with data bases, and 10 of the 22 and 2 of the 23 sequences had similarities higher than 97% in the freshwater and sediment. This could indicate specific adaptations of the community composition either due to the high metal concentrations or due to the geographical isolation of the New Caledonia. </p>


2014 ◽  
Vol 11 (6) ◽  
pp. 1479-1489 ◽  
Author(s):  
K. Attermeyer ◽  
T. Hornick ◽  
Z. E. Kayler ◽  
A. Bahr ◽  
E. Zwirnmann ◽  
...  

Abstract. Dissolved organic carbon (DOC) concentrations – mainly of terrestrial origin – are increasing worldwide in inland waters. Heterotrophic bacteria are the main consumers of DOC and thus determine DOC temporal dynamics and availability for higher trophic levels. Our aim was to study bacterial carbon (C) turnover with respect to DOC quantity and chemical quality using both allochthonous and autochthonous DOC sources. We incubated a natural bacterial community with allochthonous C (13C-labeled beech leachate) and increased concentrations and pulses (intermittent occurrence of organic matter input) of autochthonous C (phytoplankton lysate). We then determined bacterial C consumption, activities, and community composition together with the C flow through bacteria using stable C isotopes. The chemical analysis of single sources revealed differences in aromaticity and low- and high-molecular-weight substance fractions (LMWS and HMWS, respectively) between allochthonous and autochthonous C sources. Both DOC sources (allochthonous and autochthonous DOC) were metabolized at a high bacterial growth efficiency (BGE) around 50%. In treatments with mixed sources, rising concentrations of added autochthonous DOC resulted in a further, significant increase in bacterial DOC consumption of up to 68% when nutrients were not limiting. This rise was accompanied by a decrease in the humic substance (HS) fraction and an increase in bacterial biomass. Changes in DOC concentration and consumption in mixed treatments did not affect bacterial community composition (BCC), but BCC differed in single vs. mixed incubations. Our study highlights that DOC quantity affects bacterial C consumption but not BCC in nutrient-rich aquatic systems. BCC shifted when a mixture of allochthonous and autochthonous C was provided simultaneously to the bacterial community. Our results indicate that chemical quality rather than source of DOC per se (allochthonous vs. autochthonous) determines bacterial DOC turnover.


2020 ◽  
Vol 77 (3) ◽  
pp. 1247-1247 ◽  
Author(s):  
Lise Klunder ◽  
Marc S S Lavaleye ◽  
Amalia Filippidi ◽  
Judith D L van Bleijswijk ◽  
Gert-Jan Reichart ◽  
...  

2003 ◽  
Vol 69 (7) ◽  
pp. 3701-3709 ◽  
Author(s):  
Alexander Eiler ◽  
Silke Langenheder ◽  
Stefan Bertilsson ◽  
Lars J. Tranvik

ABSTRACT Batch cultures of aquatic bacteria and dissolved organic matter were used to examine the impact of carbon source concentration on bacterial growth, biomass, growth efficiency, and community composition. An aged concentrate of dissolved organic matter from a humic lake was diluted with organic compound-free artificial lake water to obtain concentrations of dissolved organic carbon (DOC) ranging from 0.04 to 2.53 mM. The bacterial biomass produced in the cultures increased linearly with the DOC concentration, indicating that bacterial biomass production was limited by the supply of carbon. The bacterial growth rate in the exponential growth phase exhibited a hyperbolic response to the DOC concentration, suggesting that the maximum growth rate was constrained by the substrate concentration at low DOC concentrations. Likewise, the bacterial growth efficiency calculated from the production of biomass and CO2 increased asymptotically from 0.4 to 10.4% with increasing DOC concentration. The compositions of the microbial communities that emerged in the cultures were assessed by separation of PCR-amplified 16S rRNA fragments by denaturing gradient gel electrophoresis. Nonmetric multidimensional scaling of the gel profiles showed that there was a gradual change in the community composition along the DOC gradient; members of the β subclass of the class Proteobacteria and members of the Cytophaga-Flavobacterium group were well represented at all concentrations, whereas members of the α subclass of the Proteobacteria were found exclusively at the lowest carbon concentration. The shift in community composition along the DOC gradient was similar to the patterns of growth efficiency and growth rate. The results suggest that the bacterial growth efficiencies, the rates of bacterial growth, and the compositions of bacterial communities are not constrained by substrate concentrations in most natural waters, with the possible exception of the most oligotrophic environments.


2012 ◽  
Vol 83 (2) ◽  
pp. 413-424 ◽  
Author(s):  
Eva Sintes ◽  
Harry Witte ◽  
Karen Stodderegger ◽  
Paul Steiner ◽  
Gerhard J. Herndl

2019 ◽  
Vol 22 (1) ◽  
pp. 369-380
Author(s):  
Zuriñe Baña ◽  
Naiara Abad ◽  
Ainhoa Uranga ◽  
Iñigo Azúa ◽  
Itxaso Artolozaga ◽  
...  

Data ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 27
Author(s):  
Hyo-Ryeon Kim ◽  
Jae-Hyun Lim ◽  
Ju-Hyoung Kim ◽  
Il-Nam Kim

Marine bacteria, which are known as key drivers for marine biogeochemical cycles and Earth’s climate system, are mainly responsible for the decomposition of organic matter and production of climate-relevant gases (i.e., CO₂, N₂O, and CH₄). However, research is still required to fully understand the correlation between environmental variables and bacteria community composition. Marine bacteria living in the Marian Cove, where the inflow of freshwater has been rapidly increasing due to substantial glacial retreat, must be undergoing significant environmental changes. During the summer of 2018, we conducted a hydrographic survey to collect environmental variables and bacterial community composition data at three different layers (i.e., the seawater surface, middle, and bottom layers) from 15 stations. Of all the bacterial data, 17 different phylum level bacteria and 21 different class level bacteria were found and Proteobacteria occupy 50.3% at phylum level following Bacteroidetes. Gammaproteobacteria and Alphaproteobacteria, which belong to Proteobacteria, are the highest proportion at the class level. Gammaproteobacteria showed the highest relative abundance in all three seawater layers. The collection of environmental variables and bacterial composition data contributes to improving our understanding of the significant relationships between marine Antarctic regions and marine bacteria that lives in the Antarctic.


Sign in / Sign up

Export Citation Format

Share Document