scholarly journals Production and Characterization of a Human Recombinant Monoclonal Fab Fragment Specific for Influenza A Viruses

2003 ◽  
Vol 10 (4) ◽  
pp. 680-685 ◽  
Author(s):  
Alessandra Desogus ◽  
Roberto Burioni ◽  
Angela Ingianni ◽  
Francesca Bugli ◽  
Raffaello Pompei ◽  
...  

ABSTRACT A human recombinant monoclonal Fab fragment that specifically recognizes all the influenza A virus strains tested was produced in transformed Escherichia coli using the phage display technique. No strain of influenza B virus reacted with it. It was purified after four cycles of panning and by a single passage through an immunoaffinity column. About 1 mg of pure monoclonal antibody was obtained from 1 liter of culture medium in 3 working days. The Fab fragment reacted with a viral 27-kDa protein, which could reasonably be a matrix protein. Indirect immunofluorescence tests performed on virus-infected MDCK cells showed that this Fab fragment was at least equally efficient as other commercial monoclonal antibody-based systems in detecting influenza A viral infections. The potential advantages of human recombinant Fabs on murine monoclonal antibodies are discussed.

2020 ◽  
Vol 58 (6) ◽  
Author(s):  
Genyan Yang ◽  
Erin N. Hodges ◽  
Jörn Winter ◽  
Natosha Zanders ◽  
Svetlana Shcherbik ◽  
...  

ABSTRACT Replication of influenza A virus (IAV) from negative-sense viral RNA (vRNA) requires the generation of positive-sense RNA (+RNA). Most molecular assays, such as conventional real-time reverse transcriptase PCR (rRT-PCR), detect total RNA in a sample without differentiating vRNA from +RNA. These assays are not designed to distinguish IAV infection versus exposure of an individual to an environment enriched with IAVs but wherein no viral replication occurs. We therefore developed a strand-specific hybridization (SSH) assay that differentiates between vRNA and +RNA and quantifies relative levels of each RNA species. The SSH assay exhibited a linearity of 7 logs with a lower limit of detection of 6.0 × 102 copies of molecules per reaction. No signal was detected in samples with a high load of nontarget template or influenza B virus, demonstrating assay specificity. IAV +RNA was detected 2 to 4 h postinoculation of MDCK cells, whereas synthesis of cold-adapted IAV +RNA was significantly impaired at 37°C. The SSH assay was then used to test IAV rRT-PCR positive nasopharyngeal specimens collected from individuals exposed to IAV at swine exhibitions (n = 7) or while working at live bird markets (n = 2). The SSH assay was able to differentiate vRNA and +RNA in samples collected from infected, symptomatic individuals versus individuals who were exposed to IAV in the environment but had no active viral replication. Data generated with this technique, especially when coupled with clinical data and assessment of seroconversion, will facilitate differentiation of actual IAV infection with replicating virus versus individuals exposed to high levels of environmental contamination but without virus infection.


2014 ◽  
Vol 66 (1) ◽  
pp. 43-50 ◽  
Author(s):  
J. Radovanov ◽  
V. Milosevic ◽  
I. Hrnjakovic ◽  
V. Petrovic ◽  
M. Ristic ◽  
...  

At present, two influenza A viruses, H1N1pdm09 and H3N2, along with influenza B virus co-circulate in the human population, causing endemic and seasonal epidemic acute febrile respiratory infections, sometimes with life-threatening complications. Detection of influenza viruses in nasopharyngeal swab samples was done by real-time RT-PCR. There were 60.2% (53/88) positive samples in 2010/11, 63.4% (52/82) in 2011/12, and 49.9% (184/369) in 2012/13. Among the positive patients, influenza A viruses were predominant during the first two seasons, while influenza B type was more active during 2012/13. Subtyping of influenza A positive samples revealed the presence of A (H1N1)pdm09 in 2010/11, A (H3N2) in 2011/12, while in 2012/13, both subtypes were detected. The highest seroprevalence against influenza A was in the age-group 30-64, and against influenza B in adults aged 30-64 and >65.


2007 ◽  
Vol 12 (9) ◽  
pp. 11-12 ◽  
Author(s):  
A Meijer ◽  
T J Meerhoff ◽  
L. E. Meuwissen ◽  
J Van Der Velden ◽  
W J Paget ◽  
...  

Influenza activity in Europe during the winter 2005-2006 started late January - early February 2006 and first occurred in the Netherlands, France, Greece and England. Subsequently, countries were affected in a random pattern across Europe and the period of influenza activity lasted till the end of April. In contrast to the winter seasons in the period 2001-2005, no west-east pattern was detected. In 12 out of 23 countries, the consultation rates for influenza-like illness or acute respiratory infection in the winter 2005-2006 were similar or higher than in the winter 2004-2005, despite a dominance of influenza B viruses that normally cause milder disease than influenza A viruses. In the remaining 11 countries the consultation rates were lower to much lower than in the winter 2004-2005. The highest consultation rates were usually observed among children aged 0-14. The circulating influenza virus types and subtypes were distributed heterogeneously across Europe. Although the figures for total virus detections in Europe indicated a predominance of influenza B virus (58% of all virus detections), in many countries influenza B virus was predominant only early in the winter, whilst later there was a marked increase in influenza A virus detections. Among the countries where influenza A viruses were co-dominant with B viruses (9/29) or were predominant (4/29), the dominant influenza A subtype was H3 in seven countries and H1 in four countries. The vast majority of characterised influenza B viruses (90%) were similar to the B/Victoria/2/87 lineage of influenza B viruses that re-emerged in Europe in the winter 2004-2005 but were not included in the vaccine for the influenza season 2005-2006. This might help to explain the dominance of influenza B viruses in many countries in Europe during the winter 2005-2006. The influenza A(H3) and A(H1) viruses were similar to the reference strains included in the 2005-2006 vaccine, A/California/7/2004 (H3N2) and A/New Caledonia/20/99 (H1N1), respectively. In conclusion, the 2005-2006 influenza epidemic in Europe was characterised by moderate clinical activity, a heterogeneous spread pattern across Europe, and a variable virus dominance by country, although an overall dominance of influenza B viruses that did not match the virus strain included in the vaccine was observed.


Viruses ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 522 ◽  
Author(s):  
Valerie Le Sage ◽  
Adalena Nanni ◽  
Amar Bhagwat ◽  
Dan Snyder ◽  
Vaughn Cooper ◽  
...  

The genomes of influenza A and B viruses have eight, single-stranded RNA segments that exist in the form of a viral ribonucleoprotein complex in association with nucleoprotein (NP) and an RNA-dependent RNA polymerase complex. We previously used high-throughput RNA sequencing coupled with crosslinking immunoprecipitation (HITS-CLIP) to examine where NP binds to the viral RNA (vRNA) and demonstrated for two H1N1 strains that NP binds vRNA in a non-uniform, non-random manner. In this study, we expand on those initial observations and describe the NP-vRNA binding profile for a seasonal H3N2 and influenza B virus. We show that, similar to H1N1 strains, NP binds vRNA in a non-uniform and non-random manner. Each viral gene segment has a unique NP binding profile with areas that are enriched for NP association as well as free of NP-binding. Interestingly, NP-vRNA binding profiles have some conservation between influenza A viruses, H1N1 and H3N2, but no correlation was observed between influenza A and B viruses. Our study demonstrates the conserved nature of non-uniform NP binding within influenza viruses. Mapping of the NP-bound vRNA segments provides information on the flexible NP regions that may be involved in facilitating assembly.


2020 ◽  
Vol 148 ◽  
Author(s):  
Wei Zhao ◽  
Xingzhi Xie ◽  
Jun Liu

Abstract We recruited 1591 patients who presented to our fever clinics from 23 January 2020 to 16 February 2020. The different imaging findings between COVID-19 pneumonia and influenza A viruses, influenza B virus pneumonia were also investigated. Most patients were infected by influenza A and B viruses in the flu-season. A laboratory kit is urgently needed to test different viruses simultaneously. Computed tomography can help early screen suspected patients with COVID-19 and differentiate different virus-related pneumonia.


2019 ◽  
Author(s):  
Andrew L. Valesano ◽  
William J. Fitzsimmons ◽  
John T. McCrone ◽  
Joshua G. Petrie ◽  
Arnold S. Monto ◽  
...  

AbstractInfluenza B virus undergoes seasonal antigenic drift more slowly than influenza A, but the reasons for this difference are unclear. While the evolutionary dynamics of influenza viruses play out globally, they are fundamentally driven by mutation, reassortment, drift, and selection within individual hosts. These processes have recently been described for influenza A virus, but little is known about the evolutionary dynamics of influenza B virus (IBV) at the level of individual infections and transmission events. Here we define the within-host evolutionary dynamics of influenza B virus by sequencing virus populations from naturally-infected individuals enrolled in a prospective, community-based cohort over 8176 person-seasons of observation. Through analysis of high depth-of-coverage sequencing data from samples from 91 individuals with influenza B, we find that influenza B virus accumulates lower genetic diversity than previously observed for influenza A virus during acute infections. Consistent with studies of influenza A viruses, the within-host evolution of influenza B viruses is characterized by purifying selection and the general absence of widespread positive selection of within-host variants. Analysis of shared genetic diversity across 15 sequence-validated transmission pairs suggests that IBV experiences a tight transmission bottleneck similar to that of influenza A virus. These patterns of local-scale evolution are consistent with influenza B virus’ slower global evolutionary rate.ImportanceThe evolution of influenza virus is a significant public health problem and necessitates the annual evaluation of influenza vaccine formulation to keep pace with viral escape from herd immunity. Influenza B virus is a serious health concern for children, in particular, yet remains understudied compared to influenza A virus. Influenza B virus evolves more slowly than influenza A, but the factors underlying this are not completely understood. We studied how the within-host diversity of influenza B virus relates to its global evolution by sequencing viruses from a community-based cohort. We found that influenza B virus populations have lower within-host genetic diversity than influenza A virus and experience a tight genetic bottleneck during transmission. Our work provides insights into the varying dynamics of influenza viruses in human infection.


1999 ◽  
Vol 73 (12) ◽  
pp. 10158-10163 ◽  
Author(s):  
O. P. Zhirnov ◽  
T. E. Konakova ◽  
W. Garten ◽  
H.-D. Klenk

ABSTRACT The nucleocapsid protein (NP) (56 kDa) of human influenza A viruses is cleaved in infected cells into a 53-kDa form. Likewise, influenza B virus NP (64 kDa) is cleaved into a 55-kDa protein with a 62-kDa intermediate (O. P. Zhirnov and A. G. Bukrinskaya, Virology 109:174–179, 1981). We show now that an antibody specific for the N terminus of influenza A virus NP reacted with the uncleaved 56-kDa form but not with the truncated NP53 form, indicating the removal of a 3-kDa peptide from the N terminus. Amino acid sequencing revealed the cleavage sites ETD16*G for A/Aichi/68 NP and sites DID7*G and EAD61*V for B/Hong Kong/72 NP. With D at position −1, acidic amino acids at position −3, and aliphatic ones at positions −2 and +1, the NP cleavage sites show a recognition motif typical for caspases, key enzymes of apoptosis. These caspase cleavage sites demonstrated evolutionary stability and were retained in NPs of all human influenza A and B viruses. NP of avian influenza viruses, which is not cleaved in infected cells, contains G instead of D at position 16. Oligopeptide DEVD derivatives, specific caspase inhibitors, were shown to prevent the intracellular cleavage of NP. All three events, the NP cleavage, the increase of caspase activity, and the development of apoptosis, coincide in cells infected with human influenza A and B viruses. The data suggest that intracellular cleavage of NP is exerted by host caspases and is associated with the development of apoptosis at the late stages of infection.


1995 ◽  
Vol 114 (3) ◽  
pp. 511-520 ◽  
Author(s):  
I. H. Brown ◽  
P. A. Harris ◽  
D. J. Alexander

SUMMARYSamples from a sow serum bank representative of the pig population of Great Britain collected during 1991–2, were examined for antibodies to influenza A, B and C viruses, using viruses which had been isolated from a variety of hosts. For influenza A viruses there was evidence of the continued circulation of ‘classical swine’ H1N1 virus (26%) seroprevalence), and human H3N2 viruses (39%) which are antigenically most closely-related to A/Port Chalmers/1/73 virus. In addition antibodies were detected to A/swine/England/201635/92 (8%), a strain of H3N2 virus which appears to have arisen by antigenic drift from conventional H3N2 swine strains. Specific antibodies (2%) were detected to an H1N1 virus (A/swine/England/195852/92) related most closely to avian H1N1 strains. In tests with human H1N1 and H3N2 viruses, excluding isolates from pigs, the highest seroprevalence was detected to the prevailing strains from the human population. Serological tests with avian H4 and H10, human H2, equine 1 and 2 influenza A viruses were all negative. Seven pigs seropositive by haemagglutination-inhibition, virus neutralization and immunoblotting assays for antibody to influenza B virus, were randomly distributed geographically suggesting that influenza B viruses may be transmitted to pigs but fail to spread. The seroprevalence to influenza C viruses was 9·9% indicating that these viruses are widespread in pigs. These results provide further evidence that the pig can be infected by a number of influenza viruses, some of which may have significance in the epidemiology of human influenza.


2006 ◽  
Vol 80 (7) ◽  
pp. 3675-3678 ◽  
Author(s):  
Eri Nobusawa ◽  
Katsuhiko Sato

ABSTRACT Human influenza A viruses evolve more rapidly than influenza B viruses. To clarify the cause of this difference, we have evaluated the mutation rate of the nonstructural gene as revealed by the genetic diversity observed during the growth of individual plaques in MDCK cells. Six plaques were studied, representing two strains each of type A and B viruses. A total of 813,663 nucleotides were sequenced, giving rates of 2.0 × 10−6 and 0.6 × 10−6 mutations per site per infectious cycle, which, when extended to 1 year, agree well with the published annual evolutionary rates.


Author(s):  
M.E. Ignat’eva ◽  
I.Yu. Samoilova ◽  
L.V. Budatsyrenova ◽  
T.V. Korita ◽  
O.E. Trotsenko

We analyzed the epidemiological situations on influenza and acute respiratory viral infections during the 2015–2016, 2016–2017 and 2017–2018 epidemic seasons in the Republic of Sakha (Yakutia). The 2015–2016 and 2016–2017 epidemic seasons differed from the previous ones by a rather high intensity of the epidemic process, moderate duration of the epidemic awareness with a two-wave pattern of the course, high morbidity of the population at the epidemic peak and the absence of the disease’s severe forms in those vaccinated against influenza. During the 2015–2016 epidemic season, the influenza A (H1N1) virus was the dominant pathogen in Yakutia. During the 2016–2017 epidemic season, the first morbidity awareness was caused by the influenza A (H3N2) virus, the second morbidity awareness was caused by the influenza B virus. In contrast to previous two seasons the 2017–2018 epidemic season is characterized by lower intensity, a significant morbidity decrease of influenza and acute respiratory viral infections in different age groups of the population and a low level of influenza viruses' circulation. Influenza A (H3N2) virus dominated and joined influenza B virus circulation was registered subsequently during the 2017–2018 epidemic season.


Sign in / Sign up

Export Citation Format

Share Document