scholarly journals Non-Uniform and Non-Random Binding of Nucleoprotein to Influenza A and B Viral RNA

Viruses ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 522 ◽  
Author(s):  
Valerie Le Sage ◽  
Adalena Nanni ◽  
Amar Bhagwat ◽  
Dan Snyder ◽  
Vaughn Cooper ◽  
...  

The genomes of influenza A and B viruses have eight, single-stranded RNA segments that exist in the form of a viral ribonucleoprotein complex in association with nucleoprotein (NP) and an RNA-dependent RNA polymerase complex. We previously used high-throughput RNA sequencing coupled with crosslinking immunoprecipitation (HITS-CLIP) to examine where NP binds to the viral RNA (vRNA) and demonstrated for two H1N1 strains that NP binds vRNA in a non-uniform, non-random manner. In this study, we expand on those initial observations and describe the NP-vRNA binding profile for a seasonal H3N2 and influenza B virus. We show that, similar to H1N1 strains, NP binds vRNA in a non-uniform and non-random manner. Each viral gene segment has a unique NP binding profile with areas that are enriched for NP association as well as free of NP-binding. Interestingly, NP-vRNA binding profiles have some conservation between influenza A viruses, H1N1 and H3N2, but no correlation was observed between influenza A and B viruses. Our study demonstrates the conserved nature of non-uniform NP binding within influenza viruses. Mapping of the NP-bound vRNA segments provides information on the flexible NP regions that may be involved in facilitating assembly.

2014 ◽  
Vol 66 (1) ◽  
pp. 43-50 ◽  
Author(s):  
J. Radovanov ◽  
V. Milosevic ◽  
I. Hrnjakovic ◽  
V. Petrovic ◽  
M. Ristic ◽  
...  

At present, two influenza A viruses, H1N1pdm09 and H3N2, along with influenza B virus co-circulate in the human population, causing endemic and seasonal epidemic acute febrile respiratory infections, sometimes with life-threatening complications. Detection of influenza viruses in nasopharyngeal swab samples was done by real-time RT-PCR. There were 60.2% (53/88) positive samples in 2010/11, 63.4% (52/82) in 2011/12, and 49.9% (184/369) in 2012/13. Among the positive patients, influenza A viruses were predominant during the first two seasons, while influenza B type was more active during 2012/13. Subtyping of influenza A positive samples revealed the presence of A (H1N1)pdm09 in 2010/11, A (H3N2) in 2011/12, while in 2012/13, both subtypes were detected. The highest seroprevalence against influenza A was in the age-group 30-64, and against influenza B in adults aged 30-64 and >65.


2019 ◽  
Author(s):  
Andrew L. Valesano ◽  
William J. Fitzsimmons ◽  
John T. McCrone ◽  
Joshua G. Petrie ◽  
Arnold S. Monto ◽  
...  

AbstractInfluenza B virus undergoes seasonal antigenic drift more slowly than influenza A, but the reasons for this difference are unclear. While the evolutionary dynamics of influenza viruses play out globally, they are fundamentally driven by mutation, reassortment, drift, and selection within individual hosts. These processes have recently been described for influenza A virus, but little is known about the evolutionary dynamics of influenza B virus (IBV) at the level of individual infections and transmission events. Here we define the within-host evolutionary dynamics of influenza B virus by sequencing virus populations from naturally-infected individuals enrolled in a prospective, community-based cohort over 8176 person-seasons of observation. Through analysis of high depth-of-coverage sequencing data from samples from 91 individuals with influenza B, we find that influenza B virus accumulates lower genetic diversity than previously observed for influenza A virus during acute infections. Consistent with studies of influenza A viruses, the within-host evolution of influenza B viruses is characterized by purifying selection and the general absence of widespread positive selection of within-host variants. Analysis of shared genetic diversity across 15 sequence-validated transmission pairs suggests that IBV experiences a tight transmission bottleneck similar to that of influenza A virus. These patterns of local-scale evolution are consistent with influenza B virus’ slower global evolutionary rate.ImportanceThe evolution of influenza virus is a significant public health problem and necessitates the annual evaluation of influenza vaccine formulation to keep pace with viral escape from herd immunity. Influenza B virus is a serious health concern for children, in particular, yet remains understudied compared to influenza A virus. Influenza B virus evolves more slowly than influenza A, but the factors underlying this are not completely understood. We studied how the within-host diversity of influenza B virus relates to its global evolution by sequencing viruses from a community-based cohort. We found that influenza B virus populations have lower within-host genetic diversity than influenza A virus and experience a tight genetic bottleneck during transmission. Our work provides insights into the varying dynamics of influenza viruses in human infection.


1999 ◽  
Vol 73 (12) ◽  
pp. 10158-10163 ◽  
Author(s):  
O. P. Zhirnov ◽  
T. E. Konakova ◽  
W. Garten ◽  
H.-D. Klenk

ABSTRACT The nucleocapsid protein (NP) (56 kDa) of human influenza A viruses is cleaved in infected cells into a 53-kDa form. Likewise, influenza B virus NP (64 kDa) is cleaved into a 55-kDa protein with a 62-kDa intermediate (O. P. Zhirnov and A. G. Bukrinskaya, Virology 109:174–179, 1981). We show now that an antibody specific for the N terminus of influenza A virus NP reacted with the uncleaved 56-kDa form but not with the truncated NP53 form, indicating the removal of a 3-kDa peptide from the N terminus. Amino acid sequencing revealed the cleavage sites ETD16*G for A/Aichi/68 NP and sites DID7*G and EAD61*V for B/Hong Kong/72 NP. With D at position −1, acidic amino acids at position −3, and aliphatic ones at positions −2 and +1, the NP cleavage sites show a recognition motif typical for caspases, key enzymes of apoptosis. These caspase cleavage sites demonstrated evolutionary stability and were retained in NPs of all human influenza A and B viruses. NP of avian influenza viruses, which is not cleaved in infected cells, contains G instead of D at position 16. Oligopeptide DEVD derivatives, specific caspase inhibitors, were shown to prevent the intracellular cleavage of NP. All three events, the NP cleavage, the increase of caspase activity, and the development of apoptosis, coincide in cells infected with human influenza A and B viruses. The data suggest that intracellular cleavage of NP is exerted by host caspases and is associated with the development of apoptosis at the late stages of infection.


1995 ◽  
Vol 114 (3) ◽  
pp. 511-520 ◽  
Author(s):  
I. H. Brown ◽  
P. A. Harris ◽  
D. J. Alexander

SUMMARYSamples from a sow serum bank representative of the pig population of Great Britain collected during 1991–2, were examined for antibodies to influenza A, B and C viruses, using viruses which had been isolated from a variety of hosts. For influenza A viruses there was evidence of the continued circulation of ‘classical swine’ H1N1 virus (26%) seroprevalence), and human H3N2 viruses (39%) which are antigenically most closely-related to A/Port Chalmers/1/73 virus. In addition antibodies were detected to A/swine/England/201635/92 (8%), a strain of H3N2 virus which appears to have arisen by antigenic drift from conventional H3N2 swine strains. Specific antibodies (2%) were detected to an H1N1 virus (A/swine/England/195852/92) related most closely to avian H1N1 strains. In tests with human H1N1 and H3N2 viruses, excluding isolates from pigs, the highest seroprevalence was detected to the prevailing strains from the human population. Serological tests with avian H4 and H10, human H2, equine 1 and 2 influenza A viruses were all negative. Seven pigs seropositive by haemagglutination-inhibition, virus neutralization and immunoblotting assays for antibody to influenza B virus, were randomly distributed geographically suggesting that influenza B viruses may be transmitted to pigs but fail to spread. The seroprevalence to influenza C viruses was 9·9% indicating that these viruses are widespread in pigs. These results provide further evidence that the pig can be infected by a number of influenza viruses, some of which may have significance in the epidemiology of human influenza.


2019 ◽  
Vol 31 (1) ◽  
pp. 72-80

Sequence analysis of the influenza virus strains is important for molecular epidemiological studies and evolutional studies of influenza viruses as well as for the assessment of vaccine effectiveness. The aim of this study was to determine and characterize predominant subtype of influenza A viruses among children attending Yangon Children’s Hospital (YCH). It was a cross-sectional descriptive study conducted at YCH. Nasopharyngeal swabs were collected from 153 children who attended the hospital due to influenza-like illness (ILI) during January-December, 2016. Viral RNA was extracted by QIAamp® Viral Mini Kit. Matrix genes of influenza A and influenza B virus were detected by multiplex Reverse TranscriptionPolymerase Chain Reaction (RT-PCR). Influenza A virus matrix gene positive samples were subjected to subtyping. Predominant subtypes were subjected to sequencing and phylogenetic analysis of their HA gene and neuraminidase (NA) gene. Influenza viruses were detected in about 14% of children with ILI. Among them, 55% showed influenza A virus positive and 45% showed influenza B virus positive. Influenza A (H3N2) virus was found to be predominant among influenza A virus positive children accounting for 83.4%. There was one case (8.3%) of influenza A (H1N1) pdm09 virus and one case (8.3%) of unsubtyped influenza A virus. Phylogenetic analysis of HA and NA gene of two Myanmar strains of H3N2 subtype revealed that they belonged to clade 3C.2a1. They had 99.3-99.4% nucleotide identity with A/Hong Kong/ 4801/2014, vaccine strain of H3N2 subtype, that was contained in southern hemisphere influenza vaccine for 2016 and northern hemisphere vaccine for 2016-2017 season. This study generated information useful for the assessment of influenza outbreaks, selection of upcoming vaccine strains and further evolutionary and epidemiological studies on influenza viruses.


2021 ◽  
Vol 11 (4) ◽  
pp. 723-736
Author(s):  
O. G. Kurskaya ◽  
A. V. Anoshina ◽  
N. V. Leonova ◽  
O. A. Simkina ◽  
T. V. Komissarova ◽  
...  

Influenza and other acute respiratory viral infections lead to a substantial incidence of severe cases and hospitalizations and so remain a global health problem. Within the frame of the Global Influenza Hospital Surveillance Network (GIHSN), we assessed the contribution of influenza and other respiratory viruses to severe cases of influenzalike diseases in patients hospitalized to the Novosibirsk infectious hospitals in the years 2018–2019. We analyzed 484 nasopharyngeal swabs collected from patients admitted to the hospitals with acute respiratory infections (ARI) using real-time polymerase chain reaction commercial kits. We confirmed viral etiology of ARI in 69.8% cases. Influenza viruses were detected in 47.1% cases, wherein concomitant circulation of influenza A(H1N1)pdm09 and A(H3N2) viruses was observed in 20.7% and 26% of patients, respectively, whereas influenza B virus was detected only in one sample. All analyzed influenza A viruses were antigenically similar to vaccine strains. Genetically, the Novosibirsk strains were closely related to influenza A viruses distributed in Russia and worldwide. Influenza A(H1N1)pdm09 virus was detected in all patients aged 0 to 14 years and required intensive care. Other respiratory viruses were detected in 36.4% of children and 5.8% of adults, and 8.3% of children had viral coinfection, whereas no cases of coinfection were detected in adults. The most common viruses in children were metapneumovirus — 12.8%, rhinovirus — 9.3% and respiratory syncytial virus — 8.0%. In adults, metapneumovirus, adenovirus, parainfluenza virus and rhinovirus were detected with a detection rate no exceeding 2%. In this study, we found no differences in the detection rate of the influenza virus due to concomitant chronic diseases, pregnancy, or smoking habits. At the same time, the detection rate of other respiratory viruses in non-smokers vs. smokers was significantly lower than in smokers and former smokers (26.15%, 66.67% and 62.50%, respectively). In addition, the level of detection of respiratory viruses in children with vs. without chronic pathology was significantly higher (55.3% and 38.7%, respectively). Thus, our and similar studies are important for monitoring and control of the infection.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Dhanasekaran Vijaykrishna ◽  
Edward C Holmes ◽  
Udayan Joseph ◽  
Mathieu Fourment ◽  
Yvonne CF Su ◽  
...  

A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology.


Author(s):  
D. J. Alexander ◽  
N. Phin ◽  
M. Zuckerman

Influenza is a highly infectious, acute illness which has affected humans and animals since ancient times. Influenza viruses form the Orthomyxoviridae family and are grouped into types A, B, and C on the basis of the antigenic nature of the internal nucleocapsid or the matrix protein. Infl uenza A viruses infect a large variety of animal species, including humans, pigs, horses, sea mammals, and birds, occasionally producing devastating pandemics in humans, such as in 1918 when it has been estimated that between 50–100 million deaths occurred worldwide.There are two important viral surface glycoproteins, the haemagglutinin (HA) and neuraminidase (NA). The HA binds to sialic acid receptors on the membrane of host cells and is the primary antigen against which a host’s antibody response is targeted. The NA cleaves the sialic acid bond attaching new viral particles to the cell membrane of host cells allowing their release. The NA is also the target of the neuraminidase inhibitor class of antiviral agents that include oseltamivir and zanamivir and newer agents such as peramivir. Both these glycoproteins are important antigens for inducing protective immunity in the host and therefore show the greatest variation.Influenza A viruses are classified into 16 antigenically distinct HA (H1–16) and 9 NA subtypes (N1–9). Although viruses of relatively few subtype combinations have been isolated from mammalian species, all subtypes, in most combinations, have been isolated from birds. Each virus possesses one HA and one NA subtype.Last century, the sudden emergence of antigenically different strains in humans, termed antigenic shift, occurred on three occasions, 1918 (H1N1), 1957 (H2N2) and 1968 (H3N2), resulting in pandemics. The frequent epidemics that occur between the pandemics are as a result of gradual antigenic change in the prevalent virus, termed antigenic drift. Epidemics throughout the world occur in the human population due to infection with influenza A viruses, such as H1N1 and H3N2 subtypes, or with influenza B virus. Phylogenetic studies have led to the suggestion that aquatic birds that show no signs of disease could be the source of many influenza A viruses in other species. The 1918 H1N1 pandemic strain is thought to have arisen as a result of spontaneous mutations within an avian H1N1 virus. However, most pandemic strains, such as the 1957 H2N2, 1968 H3N2 and 2009 pandemic H1N1, are considered to have emerged by genetic re-assortment of the segmented RNA genome of the virus, with the avian and human influenza A viruses infecting the same host.Influenza viruses do not pass readily between humans and birds but transmission between humans and other animals has been demonstrated. This has led to the suggestion that the proposed reassortment of human and avian influenza viruses takes place in an intermediate animal with subsequent infection of the human population. Pigs have been considered the leading contender for the role of intermediary because they may serve as hosts for productive infections of both avian and human viruses, and there is good evidence that they have been involved in interspecies transmission of influenza viruses; particularly the spread of H1N1 viruses to humans. Apart from public health measures related to the rapid identification of cases and isolation. The main control measures for influenza virus infections in human populations involves immunization and antiviral prophylaxis or treatment.


2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Andrew L. Valesano ◽  
William J. Fitzsimmons ◽  
John T. McCrone ◽  
Joshua G. Petrie ◽  
Arnold S. Monto ◽  
...  

ABSTRACT Influenza B virus (IBV) undergoes seasonal antigenic drift more slowly than influenza A virus, but the reasons for this difference are unclear. While the evolutionary dynamics of influenza viruses play out globally, they are fundamentally driven by mutation, reassortment, drift, and selection at the level of individual hosts. These processes have recently been described for influenza A virus, but little is known about the evolutionary dynamics of IBV during individual infections and transmission events. Here, we define the within-host evolutionary dynamics of IBV by sequencing virus populations from naturally infected individuals enrolled in a prospective, community-based cohort over 8,176 person-seasons of observation. Through analysis of high depth-of-coverage sequencing data from samples from 91 individuals with influenza B, we find that IBV accumulates lower genetic diversity than previously observed for influenza A virus during acute infections. Consistent with studies of influenza A viruses, the within-host evolution of IBVs is characterized by purifying selection and the general absence of widespread positive selection of within-host variants. Analysis of shared genetic diversity across 15 sequence-validated transmission pairs suggests that IBV experiences a tight transmission bottleneck similar to that of influenza A virus. These patterns of local-scale evolution are consistent with the lower global evolutionary rate of IBV. IMPORTANCE The evolution of influenza virus is a significant public health problem and necessitates the annual evaluation of influenza vaccine formulation to keep pace with viral escape from herd immunity. Influenza B virus is a serious health concern for children, in particular, yet remains understudied compared to influenza A virus. Influenza B virus evolves more slowly than influenza A virus, but the factors underlying this are not completely understood. We studied how the within-host diversity of influenza B virus relates to its global evolution by sequencing viruses from a community-based cohort. We found that influenza B virus populations have lower within-host genetic diversity than influenza A virus and experience a tight genetic bottleneck during transmission. Our work provides insights into the varying dynamics of influenza viruses in human infection.


Author(s):  
Emily S. Bailey ◽  
Xinye Wang ◽  
Mai-juan Ma ◽  
Guo-lin Wang ◽  
Gregory C. Gray

AbstractInfluenza viruses are an important cause of disease in both humans and animals, and their detection and characterization can take weeks. In this study, we sought to compare classical virology techniques with a new rapid microarray method for the detection and characterization of a very diverse, panel of animal, environmental, and human clinical or field specimens that were molecularly positive for influenza A alone (n = 111), influenza B alone (n = 3), both viruses (n = 13), or influenza negative (n = 2) viruses. All influenza virus positive samples in this study were first subtyped by traditional laboratory methods, and later evaluated using the FluChip-8G Insight Assay (InDevR Inc. Boulder, CO) in laboratories at Duke University (USA) or at Duke Kunshan University (China). The FluChip-8G Insight multiplexed assay agreed with classical virologic techniques 59 (54.1%) of 109 influenza A-positive, 3 (100%) of the 3 influenza B-positive, 0 (0%) of 10 both influenza A- and B-positive samples, 75% of 24 environmental samples including those positive for H1, H3, H7, H9, N1, and N9 strains, and 80% of 22 avian influenza samples. It had difficulty with avian N6 types and swine H3 and N2 influenza specimens. The FluChip-8G Insight assay performed well with most human, environmental, and animal samples, but had some difficulty with samples containing multiple viral strains and with specific animal influenza strains. As classical virology methods are often iterative and can take weeks, the FluChip-8G Insight Assay rapid results (time range 8 to 12 h) offers considerable time savings. As the FluChip-8G analysis algorithm is expected to improve over time with addition of new subtypes and sample matrices, the FluChip-8G Insight Assay has considerable promise for rapid characterization of novel influenza viruses affecting humans or animals.


Sign in / Sign up

Export Citation Format

Share Document