scholarly journals Comparison of the Mutation Rates of Human Influenza A and B Viruses

2006 ◽  
Vol 80 (7) ◽  
pp. 3675-3678 ◽  
Author(s):  
Eri Nobusawa ◽  
Katsuhiko Sato

ABSTRACT Human influenza A viruses evolve more rapidly than influenza B viruses. To clarify the cause of this difference, we have evaluated the mutation rate of the nonstructural gene as revealed by the genetic diversity observed during the growth of individual plaques in MDCK cells. Six plaques were studied, representing two strains each of type A and B viruses. A total of 813,663 nucleotides were sequenced, giving rates of 2.0 × 10−6 and 0.6 × 10−6 mutations per site per infectious cycle, which, when extended to 1 year, agree well with the published annual evolutionary rates.

2001 ◽  
Vol 356 (1416) ◽  
pp. 1861-1870 ◽  
Author(s):  
Alan J. Hay ◽  
Victoria Gregory ◽  
Alan R. Douglas ◽  
Yi Pu Lin

The evolution of influenza viruses results in (i) recurrent annual epidemics of disease that are caused by progressive antigenic drift of influenza A and B viruses due to the mutability of the RNA genome and (ii) infrequent but severe pandemics caused by the emergence of novel influenza A subtypes to which the population has little immunity. The latter characteristic is a consequence of the wide antigenic diversity and peculiar host range of influenza A viruses and the ability of their segmented RNA genomes to undergo frequent genetic reassortment (recombination) during mixed infections. Contrasting features of the evolution of recently circulating influenza AH1N1, AH3N2 and B viruses include the rapid drift of AH3N2 viruses as a single lineage, the slow replacement of successive antigenic variants of AH1N1 viruses and the co–circulation over some 25 years of antigenically and genetically distinct lineages of influenza B viruses. Constant monitoring of changes in the circulating viruses is important for maintaining the efficacy of influenza vaccines in combating disease.


2019 ◽  
Author(s):  
Andrew L. Valesano ◽  
William J. Fitzsimmons ◽  
John T. McCrone ◽  
Joshua G. Petrie ◽  
Arnold S. Monto ◽  
...  

AbstractInfluenza B virus undergoes seasonal antigenic drift more slowly than influenza A, but the reasons for this difference are unclear. While the evolutionary dynamics of influenza viruses play out globally, they are fundamentally driven by mutation, reassortment, drift, and selection within individual hosts. These processes have recently been described for influenza A virus, but little is known about the evolutionary dynamics of influenza B virus (IBV) at the level of individual infections and transmission events. Here we define the within-host evolutionary dynamics of influenza B virus by sequencing virus populations from naturally-infected individuals enrolled in a prospective, community-based cohort over 8176 person-seasons of observation. Through analysis of high depth-of-coverage sequencing data from samples from 91 individuals with influenza B, we find that influenza B virus accumulates lower genetic diversity than previously observed for influenza A virus during acute infections. Consistent with studies of influenza A viruses, the within-host evolution of influenza B viruses is characterized by purifying selection and the general absence of widespread positive selection of within-host variants. Analysis of shared genetic diversity across 15 sequence-validated transmission pairs suggests that IBV experiences a tight transmission bottleneck similar to that of influenza A virus. These patterns of local-scale evolution are consistent with influenza B virus’ slower global evolutionary rate.ImportanceThe evolution of influenza virus is a significant public health problem and necessitates the annual evaluation of influenza vaccine formulation to keep pace with viral escape from herd immunity. Influenza B virus is a serious health concern for children, in particular, yet remains understudied compared to influenza A virus. Influenza B virus evolves more slowly than influenza A, but the factors underlying this are not completely understood. We studied how the within-host diversity of influenza B virus relates to its global evolution by sequencing viruses from a community-based cohort. We found that influenza B virus populations have lower within-host genetic diversity than influenza A virus and experience a tight genetic bottleneck during transmission. Our work provides insights into the varying dynamics of influenza viruses in human infection.


1999 ◽  
Vol 73 (12) ◽  
pp. 10158-10163 ◽  
Author(s):  
O. P. Zhirnov ◽  
T. E. Konakova ◽  
W. Garten ◽  
H.-D. Klenk

ABSTRACT The nucleocapsid protein (NP) (56 kDa) of human influenza A viruses is cleaved in infected cells into a 53-kDa form. Likewise, influenza B virus NP (64 kDa) is cleaved into a 55-kDa protein with a 62-kDa intermediate (O. P. Zhirnov and A. G. Bukrinskaya, Virology 109:174–179, 1981). We show now that an antibody specific for the N terminus of influenza A virus NP reacted with the uncleaved 56-kDa form but not with the truncated NP53 form, indicating the removal of a 3-kDa peptide from the N terminus. Amino acid sequencing revealed the cleavage sites ETD16*G for A/Aichi/68 NP and sites DID7*G and EAD61*V for B/Hong Kong/72 NP. With D at position −1, acidic amino acids at position −3, and aliphatic ones at positions −2 and +1, the NP cleavage sites show a recognition motif typical for caspases, key enzymes of apoptosis. These caspase cleavage sites demonstrated evolutionary stability and were retained in NPs of all human influenza A and B viruses. NP of avian influenza viruses, which is not cleaved in infected cells, contains G instead of D at position 16. Oligopeptide DEVD derivatives, specific caspase inhibitors, were shown to prevent the intracellular cleavage of NP. All three events, the NP cleavage, the increase of caspase activity, and the development of apoptosis, coincide in cells infected with human influenza A and B viruses. The data suggest that intracellular cleavage of NP is exerted by host caspases and is associated with the development of apoptosis at the late stages of infection.


2020 ◽  
Vol 58 (6) ◽  
Author(s):  
Genyan Yang ◽  
Erin N. Hodges ◽  
Jörn Winter ◽  
Natosha Zanders ◽  
Svetlana Shcherbik ◽  
...  

ABSTRACT Replication of influenza A virus (IAV) from negative-sense viral RNA (vRNA) requires the generation of positive-sense RNA (+RNA). Most molecular assays, such as conventional real-time reverse transcriptase PCR (rRT-PCR), detect total RNA in a sample without differentiating vRNA from +RNA. These assays are not designed to distinguish IAV infection versus exposure of an individual to an environment enriched with IAVs but wherein no viral replication occurs. We therefore developed a strand-specific hybridization (SSH) assay that differentiates between vRNA and +RNA and quantifies relative levels of each RNA species. The SSH assay exhibited a linearity of 7 logs with a lower limit of detection of 6.0 × 102 copies of molecules per reaction. No signal was detected in samples with a high load of nontarget template or influenza B virus, demonstrating assay specificity. IAV +RNA was detected 2 to 4 h postinoculation of MDCK cells, whereas synthesis of cold-adapted IAV +RNA was significantly impaired at 37°C. The SSH assay was then used to test IAV rRT-PCR positive nasopharyngeal specimens collected from individuals exposed to IAV at swine exhibitions (n = 7) or while working at live bird markets (n = 2). The SSH assay was able to differentiate vRNA and +RNA in samples collected from infected, symptomatic individuals versus individuals who were exposed to IAV in the environment but had no active viral replication. Data generated with this technique, especially when coupled with clinical data and assessment of seroconversion, will facilitate differentiation of actual IAV infection with replicating virus versus individuals exposed to high levels of environmental contamination but without virus infection.


2003 ◽  
Vol 10 (4) ◽  
pp. 680-685 ◽  
Author(s):  
Alessandra Desogus ◽  
Roberto Burioni ◽  
Angela Ingianni ◽  
Francesca Bugli ◽  
Raffaello Pompei ◽  
...  

ABSTRACT A human recombinant monoclonal Fab fragment that specifically recognizes all the influenza A virus strains tested was produced in transformed Escherichia coli using the phage display technique. No strain of influenza B virus reacted with it. It was purified after four cycles of panning and by a single passage through an immunoaffinity column. About 1 mg of pure monoclonal antibody was obtained from 1 liter of culture medium in 3 working days. The Fab fragment reacted with a viral 27-kDa protein, which could reasonably be a matrix protein. Indirect immunofluorescence tests performed on virus-infected MDCK cells showed that this Fab fragment was at least equally efficient as other commercial monoclonal antibody-based systems in detecting influenza A viral infections. The potential advantages of human recombinant Fabs on murine monoclonal antibodies are discussed.


2012 ◽  
Vol 93 (9) ◽  
pp. 2008-2016 ◽  
Author(s):  
Zhi Sun ◽  
Victor C. Huber ◽  
Kara McCormick ◽  
Radhey S. Kaushik ◽  
Adrianus C. M. Boon ◽  
...  

We have developed a porcine intestine epithelial cell line, designated SD-PJEC for the propagation of influenza viruses. The SD-PJEC cell line is a subclone of the IPEC-J2 cell line, which was originally derived from newborn piglet jejunum. Our results demonstrate that SD-PJEC is a cell line of epithelial origin that preferentially expresses receptors of oligosaccharides with Sia2-6Gal modification. This cell line is permissive to infection with human and swine influenza A viruses and some avian influenza viruses, but poorly support the growth of human-origin influenza B viruses. Propagation of swine-origin influenza viruses in these cells results in a rapid growth rate within the first 24 h post-infection and the titres ranged from 4 to 8 log10 TCID50 ml−1. The SD-PJEC cell line was further tested as a potential alternative cell line to Madin–Darby canine kidney (MDCK) cells in conjunction with 293T cells for rescue of swine-origin influenza viruses using the reverse genetics system. The recombinant viruses A/swine/North Carolina/18161/02 (H1N1) and A/swine/Texas/4199-2/98 (H3N2) were rescued with virus titres of 7 and 8.25 log10 TCID50 ml−1, respectively. The availability of this swine-specific cell line represents a more relevant substrate for studies and growth of swine-origin influenza viruses.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Dhanasekaran Vijaykrishna ◽  
Edward C Holmes ◽  
Udayan Joseph ◽  
Mathieu Fourment ◽  
Yvonne CF Su ◽  
...  

A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Matthew D. Pauly ◽  
Daniel M. Lyons ◽  
William J. Fitzsimmons ◽  
Adam S. Lauring

ABSTRACT RNA viruses exist as genetically diverse populations. This standing genetic diversity gives them the potential to adapt rapidly, evolve resistance to antiviral therapeutics, and evade immune responses. Viral mutants with altered mutation rates or mutational tolerance have provided insights into how genetic diversity arises and how it affects the behavior of RNA viruses. To this end, we identified variants within the polymerase complex of influenza virus that are able tolerate drug-mediated increases in viral mutation rates. We find that drug resistance is highly dependent on interactions among mutations in the polymerase complex. In contrast to other viruses, influenza virus counters the effect of higher mutation rates primarily by maintaining high levels of genome replication. These findings suggest the importance of maintaining large population sizes for viruses with high mutation rates and show that multiple proteins can affect both mutation rate and genome synthesis. Lethal mutagenesis is a broad-spectrum antiviral strategy that employs mutagenic nucleoside analogs to exploit the high mutation rate and low mutational tolerance of many RNA viruses. Studies of mutagen-resistant viruses have identified determinants of replicative fidelity and the importance of mutation rate to viral population dynamics. We have previously demonstrated the effective lethal mutagenesis of influenza A virus using three nucleoside analogs as well as the virus’s high genetic barrier to mutagen resistance. Here, we investigate the mutagen-resistant phenotypes of mutations that were enriched in drug-treated populations. We find that PB1 T123A has higher replicative fitness than the wild type, PR8, and maintains its level of genome production during 5-fluorouracil (2,4-dihydroxy-5-fluoropyrimidine) treatment. Surprisingly, this mutagen-resistant variant also has an increased baseline rate of C-to-U and G-to-A mutations. A second drug-selected mutation, PA T97I, interacts epistatically with PB1 T123A to mediate high-level mutagen resistance, predominantly by limiting the inhibitory effect of nucleosides on polymerase activity. Consistent with the importance of epistatic interactions in the influenza virus polymerase, our data suggest that nucleoside analog resistance and replication fidelity are strain dependent. Two previously identified ribavirin {1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1H-1,2,4-triazole-3-carboxamide} resistance mutations, PB1 V43I and PB1 D27N, do not confer drug resistance in the PR8 background, and the PR8-PB1 V43I polymerase exhibits a normal baseline mutation rate. Our results highlight the genetic complexity of the influenza A virus polymerase and demonstrate that increased replicative capacity is a mechanism by which an RNA virus can counter the negative effects of elevated mutation rates. IMPORTANCE RNA viruses exist as genetically diverse populations. This standing genetic diversity gives them the potential to adapt rapidly, evolve resistance to antiviral therapeutics, and evade immune responses. Viral mutants with altered mutation rates or mutational tolerance have provided insights into how genetic diversity arises and how it affects the behavior of RNA viruses. To this end, we identified variants within the polymerase complex of influenza virus that are able to tolerate drug-mediated increases in viral mutation rates. We find that drug resistance is highly dependent on interactions among mutations in the polymerase complex. In contrast to other viruses, influenza virus counters the effect of higher mutation rates primarily by maintaining high levels of genome replication. These findings suggest the importance of maintaining large population sizes for viruses with high mutation rates and show that multiple proteins can affect both mutation rate and genome synthesis.


Sign in / Sign up

Export Citation Format

Share Document