scholarly journals Complement-Mediated Neutralization of Canine Distemper Virus In Vitro: Cross-Reaction between Vaccine Onderstepoort and Field KDK-1 Strains with Different Hemagglutinin Gene Characteristics

2002 ◽  
Vol 9 (4) ◽  
pp. 921-924 ◽  
Author(s):  
Masami Mochizuki ◽  
Megumi Motoyoshi ◽  
Ken Maeda ◽  
Kazunari Kai

ABSTRACT The properties of neutralization of antigens of canine distemper virus Onderstepoort and a recent field isolate, KDK-1, were investigated with strain-specific dog sera. A conventional neutralization assay indicated antigenic dissimilarity between the strains; however, when guinea pig complement was included in the reaction mixture, the strains were neutralized with not only the homologous but also the heterologous antibodies.

1980 ◽  
Vol 29 (3) ◽  
pp. 940-944 ◽  
Author(s):  
A E Metzler ◽  
R J Higgins ◽  
S Krakowka ◽  
A Koestner

Virulence of canine distemper virus (CDV) adapted to in vitro growth in Vero or bovine cells was determined by inoculation into CDV-susceptible neonatal gnotobiotic dogs. When compared with dogs given virulent R252-CDV, Vero R252-CDV was attenuated at passage level 14. In contrast, dogs inoculated with bovine R252-CDV at the same passage level experienced rapid fatal neurological disease. Virulence was not linked to ability to infect or replicate in canine pulmonary macrophage cultures. Retention of virulence by bovine R252-CDV is unique and worthy of further study.


Glia ◽  
1991 ◽  
Vol 4 (4) ◽  
pp. 408-416 ◽  
Author(s):  
Susan Pearce-Kelling ◽  
William J. Mitchell ◽  
Brian A. Summers ◽  
Max J. G. Appel

1983 ◽  
Vol 62 (1-2) ◽  
pp. 51-58 ◽  
Author(s):  
A. Zurbriggen ◽  
M. Vandevelde

2020 ◽  
Vol 7 ◽  
Author(s):  
Fuxiao Liu ◽  
Qianqian Wang ◽  
Yilan Huang ◽  
Ning Wang ◽  
Youming Zhang ◽  
...  

Canine distemper virus (CDV), belonging to the genus Morbillivirus in the family Paramyxoviridae, is a highly contagious pathogen, affecting various domestic, and wild carnivores. Conventional methods are too cumbersome to be used for high-throughput screening of anti-CDV drugs. In this study, a recombinant CDV was rescued using reverse genetics for facilitating screening of anti-CDV drug in vitro. The recombinant CDV could stably express the NanoLuc® luciferase (NLuc), a novel enzyme that was smaller and “brighter” than others. The intensity of NLuc-catalyzed luminescence reaction indirectly reflected the anti-CDV effect of a certain drug, due to a positive correlation between NLuc expression and virus propagation in vitro. Based on such a characteristic feature, the recombinant CDV was used for anti-CDV assays on four drugs (ribavirin, moroxydine hydrochloride, 1-adamantylamine hydrochloride, and tea polyphenol) via analysis of luciferase activity, instead of via conventional methods. The result showed that out of these four drugs, only the ribavirin exhibited a detectable anti-CDV effect. The NLuc-tagged CDV would be a rapid tool for high-throughput screening of anti-CDV drugs.


2005 ◽  
Vol 107 (1-2) ◽  
pp. 1-12 ◽  
Author(s):  
P. Engelhardt ◽  
M. Wyder ◽  
A. Zurbriggen ◽  
A. Gröne

2008 ◽  
Vol 77 (2) ◽  
pp. 108-113 ◽  
Author(s):  
Gabriella Elia ◽  
Chiara Belloli ◽  
Francesco Cirone ◽  
Maria Stella Lucente ◽  
Marta Caruso ◽  
...  

2018 ◽  
Vol 38 (8) ◽  
pp. 1681-1684
Author(s):  
Isis I.G.G. Taques ◽  
Thaís O. Morgado ◽  
Ísis A. Braga ◽  
Regina C.R. Paz ◽  
Sandra H.R. Corrêa ◽  
...  

ABSTRACT: The occurrence of antibodies against canine distemper virus (CDV), parvovirus and Ehrlichia spp. in wild captive carnivores was evaluated in a zoological park in midwestern Brazil. Serum samples were collected between 2007 and 2014 from 45 carnivores. Antibodies were evaluated by virus neutralization assay for CDV, hemagglutination inhibition test for parvovirus, indirect immunofluorescent and Enzyme-linked immunosorbent assay for Ehrlichia spp. Antibodies against CDV and parvovirus were detected in 75% of Canidae and Felidae. Procyonidae were negative for CDV, although one Mustelidae was positive. TwoCanidae presented antibodies reactive to E. canis antigens. The high antibodies rates to CDV and parvovirus suggest the contact with both pathogens, however since no clinical history of disease are registered in the Zoo-UFMT, we can presume that carnivores have responded satisfactorily against the antigens. The low serological rates observed against Ehrlichia spp. may be resulted to the low occurrence of ticks among carnivores.


2004 ◽  
Vol 71 (3) ◽  
Author(s):  
O.I. Oyedele ◽  
D.O. Oluwayelu ◽  
S.I.B. Cadmus ◽  
F.D. Adu

Blood samples from 50 dogs were collected at three veterinary clinics in Ibadan and Abuja, Nigeria and the serum from each sample was evaluated serologically for neutralizing antibodies against canine distemper virus (CDV) by the highly sensitive plaque reduction (PRN) neutralization assay. Thirteen dogs had plaque reduction neutralization titres of 0-100, seven had titres of 100-1 000 while 30 had titres ranging from 1 000-6 000. The PRN titres of vaccinated dogs were found to be significantly higher than unvaccinated dogs. The widespread use of the highly reproducible PRN test for the evaluation of antibody response to CDV may be very important in the generation of international CDV positive serum standards that should help to improve pre-and post-vaccination testing of dogs worldwide.


mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Karen A. Terio ◽  
Meggan E. Craft

ABSTRACTOne of the greatest threats to the conservation of wild cat populations may be dogs or, at least, one of their viruses. Canine distemper virus (CDV), a single-stranded RNA virus in theParamyxoviridaefamily and genusMorbillivirus, infects and causes disease in a variety of species, not just canids. An outbreak of CDV in wild lions in the Serengeti, Tanzania, in 1994 was a wake-up call for conservationists, as it demonstrated that an infectious disease could swiftly impact a previously healthy felid population. To understand how this virus causes disease in noncanid hosts, researchers have focused on specific mutations in the binding site of the CDV hemagglutinin gene. Now, Seimon et al. provide information on CDV in its latest feline victim, the endangered wild Amur tiger (Panthera tigris altaica) [T. A. Seimon et al., mBio 4(4):e00410-13, 2013, doi:10.1128/mBio.00410-13]. Their findings of CDV strains infecting tigers, in combination with recent information from other felids, paints a different picture, one in which CDV strains from a variety of geographic lineages and with a variety of amino acid residues in the hemagglutinin gene binding site can infect cats and cause disease. Although CDV has been known as a multihost disease since its discovery in domestic dogs in 1905, perhaps it is time to reconsider whether these noncanid species are not just incidental or “spillover” hosts but, rather, a normal part of the complex ecology of this infectious disease.


Sign in / Sign up

Export Citation Format

Share Document