scholarly journals Contrasting Patterns of Serologic and Functional Antibody Dynamics to Plasmodium falciparum Antigens in a Kenyan Birth Cohort

2015 ◽  
Vol 23 (2) ◽  
pp. 104-116 ◽  
Author(s):  
Arlene E. Dent ◽  
Indu Malhotra ◽  
Xuelie Wang ◽  
Denise Babineau ◽  
Kee Thai Yeo ◽  
...  

ABSTRACTIgG antibodies toPlasmodium falciparumare transferred from the maternal to fetal circulation during pregnancy, wane after birth, and are subsequently acquired in response to natural infection. We examined the dynamics of malaria antibody responses of 84 Kenyan infants from birth to 36 months of age by (i) serology, (ii) variant surface antigen (VSA) assay, (iii) growth inhibitory activity (GIA), and (iv) invasion inhibition assays (IIA) specific for merozoite surface protein 1 (MSP1) and sialic acid-dependent invasion pathway. Maternal antibodies in each of these four categories were detected in cord blood and decreased to their lowest level by approximately 6 months of age. Serologic antibodies to 3 preerythrocytic and 10 blood-stage antigens subsequently increased, reaching peak prevalence by 36 months. In contrast, antibodies measured by VSA, GIA, and IIA remained low even up to 36 months. Infants sensitized toP. falciparum in utero, defined by cord blood lymphocyte recall responses to malaria antigens, acquired antimalarial antibodies at the same rate as those who were not sensitizedin utero, indicating that fetal exposure to malaria antigens did not affect subsequent infant antimalarial responses. Infants with detectable serologic antibodies at 12 months of age had an increased risk ofP. falciparuminfection during the subsequent 24 months. We conclude that serologic measures of antimalarial antibodies in children 36 months of age or younger represent biomarkers of malaria exposure rather than protection and that functional antibodies develop after 36 months of age in this population.

2005 ◽  
Vol 73 (6) ◽  
pp. 3462-3470 ◽  
Author(s):  
Indu Malhotra ◽  
Peter Mungai ◽  
Eric Muchiri ◽  
John Ouma ◽  
Shobhona Sharma ◽  
...  

ABSTRACT Prenatal immunity to Plasmodium falciparum merozoite proteins involved in erythrocyte invasion may contribute to the partial protection against malaria that is acquired during infancy in areas of stable malaria transmission. We examined newborn and maternal cytokine and antibody responses to merozoite surface protein-1 (MSP-1), ribosomal phosphoprotein P0 (PfP0), and region II of erythrocyte binding antigen-175 (EBA-175) in infant-mother pairs in Kenya. Overall, 82 of 167 (50%), 106 of 176 (60%), and 38 of 84 (45%) cord blood lymphocytes (CBL) from newborns produced one or more cytokines in response to MSP-1, PfP0, and EBA-175, respectively. Newborns of primigravid and/or malaria-infected women were more likely to have antigen-responsive CBL than were newborns of multigravid and/or uninfected women at delivery. Newborn cytokine responses did not match those of their mothers and fell into three distinct categories, Th1 (21 of 55 CBL donors produced only gamma interferon and/or interleukin 2 [IL-2]), Th2 (21 of 55 produced only IL-5 and/or IL-13), and mixed Th1/Th2 (13 of 55). Newborns produced more IL-10 than adults. High and low levels of cord blood IL-12 p70 production induced by anti-CD40 activation were associated with malaria-specific Th1 and Th2 responses, respectively. Antigen-responsive CBL in some newborns were detected only after depletion of IL-10-secreting CD8 cells with enrichment for CD4 cells. These data indicate that prenatal sensitization to blood-stage Plasmodium falciparum occurs frequently in areas where malaria is holoendemic. Modulation of this immunity, possibly by maternal parity and malaria, may affect the acquisition of protective immunity against malaria during infancy.


2018 ◽  
Vol 86 (8) ◽  
Author(s):  
Arunaditya Deshmukh ◽  
Bishwanath Kumar Chourasia ◽  
Sonali Mehrotra ◽  
Ikhlaq Hussain Kana ◽  
Gourab Paul ◽  
...  

ABSTRACTPlasmodium falciparummerozoite surface protein 3 (MSP3) is an abundantly expressed secreted merozoite surface protein and a leading malaria vaccine candidate antigen. However, it is unclear how MSP3 is retained on the surface of merozoites without a glycosylphosphatidylinositol (GPI) anchor or a transmembrane domain. In the present study, we identified an MSP3-associated network on thePlasmodiummerozoite surface by immunoprecipitation ofPlasmodiummerozoite lysate using antibody to the N terminus of MSP3 (anti-MSP3N) followed by mass spectrometry analysis. The results suggested the association of MSP3 with other merozoite surface proteins: MSP1, MSP6, MSP7, RAP2, and SERA5. Protein-protein interaction studies by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) analysis showed that MSP3 complex consists of MSP1, MSP6, and MSP7 proteins. Immunological characterization of MSP3 revealed that MSP3N is strongly recognized by hyperimmune serum from African and Asian populations. Furthermore, we demonstrate that human antibodies, affinity purified against recombinant MSP3N (rMSP3N), promote opsonic phagocytosis of merozoites in cooperation with monocytes. At nonphysiological concentrations, anti-MSP3N antibodies inhibited the growth ofP. falciparum in vitro. Together, the data suggest that MSP3 and especially its N-terminal region containing known B/T cell epitopes are targets of naturally acquired immunity against malaria and also comprise an important candidate for a multisubunit malaria vaccine.


2011 ◽  
Vol 18 (8) ◽  
pp. 1221-1228 ◽  
Author(s):  
Maryam Imam ◽  
Yengkhom Sangeeta Devi ◽  
Akhilesh K. Verma ◽  
Virander Singh Chauhan

ABSTRACTRecombinantPlasmodium falciparummerozoite surface protein 3 (PfMSP3F) and a 24-kDa fragment from its N terminus (MSP3N) that includes the essential conserved domain, which elicits the maximum antibody (Ab)-dependent cellular inhibition (ADCI), were expressed as soluble proteins inEscherichia coli. Both proteins were found to be stable in both soluble and lyophilized forms. Immunization with MSP3F and MSP3N formulated separately with two human-compatible adjuvants, aluminum hydroxide (Alhydrogel) and Montanide ISA 720, produced significant antibody responses in mice and rabbits. Polyclonal Abs against both antigens recognized native MSP3 in the parasite lysate. These two Abs also recognized two synthetic peptides, previously characterized to possess B cell epitopes from the N-terminal region. Antibody depletion assay showed that most of the IgG response is directed toward the N-terminal region of the full protein. Anti-MSP3F and anti-MSP3N rabbit antibodies did not inhibit merozoite invasion or intraerythrocytic development but significantly reduced parasitemia in the presence of human monocytes. The ADCI demonstrated by anti-MSP3N antibodies was comparable to that exhibited by anti-MSP3F antibodies (both generated in rabbit). These results suggest that the N-terminal fragment of MSP3 can be considered a vaccine candidate that can form part of a multigenic vaccine against malaria.


2003 ◽  
Vol 71 (3) ◽  
pp. 1242-1246 ◽  
Author(s):  
Guoling Xi ◽  
Rose G. F. Leke ◽  
Lucy W. Thuita ◽  
Ainong Zhou ◽  
Robert J. I. Leke ◽  
...  

ABSTRACT Congenital Plasmodium falciparum malaria in newborns is uncommon in sub-Saharan Africa. A significant number of infants, however, become infected or exposed to malarial antigens either in utero or at delivery and have the potential to produce antimalarial antibodies and memory cells before their first natural infection. In Yaounde, Cameroon, parasite-specific immunoglobulin M (IgM) was detected in 14% of cord blood samples. The IgM antibodies reacted with a wide range of asexual-stage antigens, with each newborn having its own unique pattern of IgM reactivity. PCR-based detection and genotyping of cord blood parasites found that the prevalence, total number of parasite genotypes, and complexity of infection were higher in newborns who had produced antimalarial IgM than those who had not. Maternal placental malaria and anemia were associated with the production of P. falciparum-specific IgM by the fetus. The effect of early immune priming on acquisition of immunity by infants is unknown and merits further investigation, since a significant proportion of Cameroonian newborns developed a humoral response to malaria before birth.


2010 ◽  
Vol 9 (7) ◽  
pp. 1064-1074 ◽  
Author(s):  
Madhusudan Kadekoppala ◽  
Solabomi A. Ogun ◽  
Steven Howell ◽  
Ruwani S. Gunaratne ◽  
Anthony A. Holder

ABSTRACT Proteins located on Plasmodium falciparum merozoites, the invasive form of the parasite's asexual blood stage, are of considerable interest in vaccine research. Merozoite surface protein 7 (MSP7) forms a complex with MSP1 and is encoded by a member of a multigene family located on chromosome 13. The family codes for MSP7 and five MSP7-related proteins (MSRPs). In the present study, we have investigated the expression and the effect of msrp gene deletion at the asexual blood stage. In addition to msp7, msrp2, msrp3, and msrp5 are transcribed, and mRNA was easily detected by hybridization analysis, whereas mRNA for msrp1 and msrp4 could be detected only by reverse transcription (RT)-PCR. Notwithstanding evidence of transcription, antibodies to recombinant MSRPs failed to detect specific proteins, except for antibodies to MSRP2. Sequential proteolytic cleavages of MSRP2 resulted in 28- and 25-kDa forms. However, MSRP2 was absent from merozoites; the 25-kDa MSRP2 protein (MSRP225) was soluble and secreted upon merozoite egress. The msrp genes were deleted by targeted disruption in the 3D7 line, leading to ablation of full-length transcripts. MSRP deletion mutants had no detectable phenotype, with growth and invasion characteristics comparable to those of the parental parasite; only the deletion of MSP7 led to a detectable growth phenotype. Thus, within this family some of the genes are transcribed at a significant level in asexual blood stages, but the corresponding proteins may or may not be detectable. Interactions of the expressed proteins with the merozoite also differ. These results highlight the potential for unexpected differences of protein expression levels within gene families.


2012 ◽  
Vol 80 (12) ◽  
pp. 4177-4185 ◽  
Author(s):  
Christopher G. Adda ◽  
Christopher A. MacRaild ◽  
Linda Reiling ◽  
Kaye Wycherley ◽  
Michelle J. Boyle ◽  
...  

ABSTRACTMerozoite surface protein 2 (MSP2) is an abundant glycosylphosphatidylinositol (GPI)-anchored protein ofPlasmodium falciparum, which is a potential component of a malaria vaccine. As all forms of MSP2 can be categorized into two allelic families, a vaccine containing two representative forms of MSP2 may overcome the problem of diversity in this highly polymorphic protein. Monomeric recombinant MSP2 is an intrinsically unstructured protein, but its conformational properties on the merozoite surface are unknown. This question is addressed here by analyzing the 3D7 and FC27 forms of recombinant and parasite MSP2 using a panel of monoclonal antibodies raised against recombinant MSP2. The epitopes of all antibodies, mapped using both a peptide array and by nuclear magnetic resonance (NMR) spectroscopy on full-length recombinant MSP2, were shown to be linear. The antibodies revealed antigenic differences, which indicate that the conserved N- and C-terminal regions, but not the central variable region, are less accessible in the parasite antigen. This appears to be an intrinsic property of parasite MSP2 and is not dependent on interactions with other merozoite surface proteins as the loss of some conserved-region epitopes seen using the immunofluorescence assay (IFA) on parasite smears was also seen on Western blot analyses of parasite lysates. Further studies of the structural basis of these antigenic differences are required in order to optimize recombinant MSP2 constructs being evaluated as potential vaccine components.


2012 ◽  
Vol 80 (4) ◽  
pp. 1583-1592 ◽  
Author(s):  
Eva H. Clark ◽  
Claudia J. Silva ◽  
Greta E. Weiss ◽  
Shanping Li ◽  
Carlos Padilla ◽  
...  

ABSTRACTThe development of clinical immunity toPlasmodium falciparummalaria is thought to require years of parasite exposure, a delay often attributed to difficulties in developing protective antibody levels. In this study, we evaluated severalP. falciparumvaccine candidate antigens, including apical membrane antigen 1 (AMA-1), circumsporozoite protein (CSP), erythrocyte binding antigen 175 (EBA-175), and the 19-kDa region of merozoite surface protein 1 (MSP119). After observing a more robust antibody response to MSP119, we evaluated the magnitude and longevity of IgG responses specific to this antigen in Peruvian adults and children before, during, and afterP. falciparuminfection. In this low-transmission region, even one reported prior infection was sufficient to produce a positive anti-MSP119IgG response for >5 months in the absence of reinfection. We also observed an expansion of the total plasmablast (CD19+CD27+CD38high) population in the majority of individuals shortly after infection and detected MSP1-specific memory B cells in a subset of individuals at various postinfection time points. This evidence supports our hypothesis that effective antimalaria humoral immunity can develop in low-transmission regions.


2013 ◽  
Vol 81 (10) ◽  
pp. 3843-3854 ◽  
Author(s):  
James R. Alaro ◽  
Andrea Partridge ◽  
Kazutoyo Miura ◽  
Ababacar Diouf ◽  
Ana M. Lopez ◽  
...  

ABSTRACTThe C-terminal 19-kDa domain ofPlasmodium falciparummerozoite surface protein 1 (PfMSP119) is an established target of protective antibodies. However, clinical trials ofPfMSP142, a leading blood-stage vaccine candidate which contains the protective epitopes ofPfMSP119, revealed suboptimal immunogenicity and efficacy. Based on proof-of-concept studies in thePlasmodium yoeliimurine model, we produced a chimeric vaccine antigen containing recombinantPfMSP119(rPfMSP119) fused to the N terminus ofP. falciparummerozoite surface protein 8 that lacked its low-complexity Asn/Asp-rich domain, rPfMSP8 (ΔAsn/Asp). Immunization of mice with the chimeric rPfMSP1/8 vaccine elicited strong T cell responses to conserved epitopes associated with the rPfMSP8 (ΔAsn/Asp) fusion partner. While specific forPfMSP8, this T cell response was adequate to provide help for the production of high titers of antibodies to bothPfMSP119and rPfMSP8 (ΔAsn/Asp) components. This occurred with formulations adjuvanted with either Quil A or with Montanide ISA 720 plus CpG oligodeoxynucleotide (ODN) and was observed in both inbred and outbred strains of mice.PfMSP1/8-induced antibodies were highly reactive with two major alleles ofPfMSP119(FVO and 3D7). Of particular interest, immunization withPfMSP1/8 elicited higher titers ofPfMSP119-specific antibodies than a combined formulation of rPfMSP142and rPfMSP8 (ΔAsn/Asp). As a measure of functionality,PfMSP1/8-specific rabbit IgG was shown to potently inhibit thein vitrogrowth of blood-stage parasites of the FVO and 3D7 strains ofP. falciparum. These data support the further testing and evaluation of this chimericPfMSP1/8 antigen as a component of a multivalent vaccine forP. falciparummalaria.


2011 ◽  
Vol 79 (5) ◽  
pp. 2070-2078 ◽  
Author(s):  
Stephen J. Jordan ◽  
Ana L. Oliveira ◽  
Jean N. Hernandez ◽  
Robert A. Oster ◽  
Debasish Chattopadhyay ◽  
...  

ABSTRACTMalaria caused byPlasmodium falciparumis a major cause of global infant mortality, and no effective vaccine currently exists. Multiple potential vaccine targets have been identified, and immunoepidemiology studies have played a major part in assessing those candidates. When such studies are carried out in high-transmission settings, individuals are often superinfected with complex mixtures of genetically distinctP. falciparumtypes, making it impossible to directly correlate the genotype of the infecting antigen with the antibody response. In contrast, in regions of low transmissionP. falciparuminfections are often genetically simple, and direct comparison of infecting genotype and antigen-specific immune responses is possible. As a test of the utility of this approach, responses against several domains and allelic variants of the vaccine candidateP. falciparummerozoite surface protein 3 (PfMSP3) were tested in serum samples collected near Iquitos, Peru. Antibodies recognizing both the conserved C-terminal and the more variable N-terminal domain were identified, but anti-N-terminal responses were more prevalent, of higher titers, and primarily of cytophilic subclasses. Comparing antibody responses to different PfMSP3 variants with thePfMSP3genotype present at the time of infection showed that anti-N-terminal responses were largely allele class specific, but there was some evidence for responses that cross-reacted across allele classes. Evidence for cross-reactive responses was much stronger when variants within one allele class were tested, which has implications for the rational development of genotype-transcending PfMSP3-based vaccines.


2014 ◽  
Vol 83 (2) ◽  
pp. 646-660 ◽  
Author(s):  
Danielle I. Stanisic ◽  
Freya J. I. Fowkes ◽  
Melanie Koinari ◽  
Sarah Javati ◽  
Enmoore Lin ◽  
...  

Individuals in areas ofPlasmodium falciparumendemicity develop immunity to malaria after repeated exposure. Knowledge of the acquisition and nature of protective immune responses toP. falciparumis presently limited, particularly for young children. We examined antibodies (IgM, IgG, and IgG subclasses) to merozoite antigens and their relationship to the prospective risk of malaria in children 1 to 4 years of age in a region of malaria endemicity in Papua New Guinea. IgG, IgG1, and IgG3 responses generally increased with age, were higher in children with active infection, and reflected geographic heterogeneity in malaria transmission. Antigenic properties, rather than host factors, appeared to be the main determinant of the type of IgG subclass produced. High antibody levels were not associated with protection from malaria; in contrast, they were typically associated with an increased risk of malaria. Adjustment for malaria exposure, using a novel molecular measure of the force of infection byP. falciparum, accounted for much of the increased risk, suggesting that the antibodies were markers of higher exposure toP. falciparum. Comparisons between antibodies in this cohort of young children and in a longitudinal cohort of older children suggested that the lack of protective association was explained by lower antibody levels among young children and that there is a threshold level of antibodies required for protection from malaria. Our results suggest that in populations with low immunity, such as young children, antibodies to merozoite antigens may act as biomarkers of malaria exposure and that, with increasing exposure and responses of higher magnitude, antibodies may act as biomarkers of protective immunity.


Sign in / Sign up

Export Citation Format

Share Document