scholarly journals Atypical Mitogen-Activated Protein Kinase Phosphatase Implicated in Regulating Transition from Pre-S-Phase Asexual Intraerythrocytic Development of Plasmodium falciparum

2013 ◽  
Vol 12 (9) ◽  
pp. 1171-1178 ◽  
Author(s):  
Bharath Balu ◽  
Christopher Campbell ◽  
Jennifer Sedillo ◽  
Steven Maher ◽  
Naresh Singh ◽  
...  

ABSTRACTIntraerythrocytic development of the human malaria parasitePlasmodium falciparumappears as a continuous flow through growth and proliferation. To develop a greater understanding of the critical regulatory events, we utilizedpiggyBacinsertional mutagenesis to randomly disrupt genes. Screening a collection ofpiggyBacmutants for slow growth, we isolated the attenuated parasite C9, which carried a single insertion disrupting the open reading frame (ORF) of PF3D7_1305500. This gene encodes a protein structurally similar to a mitogen-activated protein kinase (MAPK) phosphatase, except for two notable characteristics that alter the signature motif of the dual-specificity phosphatase domain, suggesting that it may be a low-activity phosphatase or pseudophosphatase. C9 parasites demonstrated a significantly lower growth rate with delayed entry into the S/M phase of the cell cycle, which follows the stage of maximum PF3D7_1305500 expression in intact parasites. Genetic complementation with the full-length PF3D7_1305500 rescued the wild-type phenotype of C9, validating the importance of the putative protein phosphatase PF3D7_1305500 as a regulator of pre-S-phase cell cycle progression inP. falciparum.

2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Mingyu Hou ◽  
Wenhui Wang ◽  
Feizi Hu ◽  
Yuanxing Zhang ◽  
Dahai Yang ◽  
...  

ABSTRACT Bacterial phosphothreonine lyases have been identified to be type III secretion system (T3SS) effectors that irreversibly dephosphorylate host mitogen-activated protein kinase (MAPK) signaling to promote infection. However, the effects of phosphothreonine lyase on nuclear factor κB (NF-κB) signaling remain largely unknown. In this study, we detected significant phosphothreonine lyase-dependent p65 degradation during Edwardsiella piscicida infection in macrophages, and this degradative effect was blocked by the protease inhibitor MG132. Further analysis revealed that phosphothreonine lyase promotes the dephosphorylation and ubiquitination of p65 by inhibiting the phosphorylation of mitogen- and stress-activated protein kinase-1 (MSK1) and by inhibiting the phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2), p38α, and c-Jun N-terminal kinase (JNK). Moreover, we revealed that the catalytic active site of phosphothreonine lyase plays a critical role in regulating the MAPK-MSK1-p65 signaling axis. Collectively, the mechanism described here expands our understanding of the pathogenic effector in not only regulating MAPK signaling but also regulating p65. These findings uncover a new mechanism by which pathogenic bacteria overcome host innate immunity to promote pathogenesis.


2008 ◽  
Vol 7 (8) ◽  
pp. 1309-1317 ◽  
Author(s):  
Iwona Migdal ◽  
Yulia Ilina ◽  
Markus J. Tamás ◽  
Robert Wysocki

ABSTRACT Cells slow down cell cycle progression in order to adapt to unfavorable stress conditions. Yeast (Saccharomyces cerevisiae) responds to osmotic stress by triggering G1 and G2 checkpoint delays that are dependent on the mitogen-activated protein kinase (MAPK) Hog1. The high-osmolarity glycerol (HOG) pathway is also activated by arsenite, and the hog1Δ mutant is highly sensitive to arsenite, partly due to increased arsenite influx into hog1Δ cells. Yeast cell cycle regulation in response to arsenite and the role of Hog1 in this process have not yet been analyzed. Here, we found that long-term exposure to arsenite led to transient G1 and G2 delays in wild-type cells, whereas cells that lack the HOG1 gene or are defective in Hog1 kinase activity displayed persistent G1 cell cycle arrest. Elevated levels of intracellular arsenite and “cross talk” between the HOG and pheromone response pathways, observed in arsenite-treated hog1Δ cells, prolonged the G1 delay but did not cause a persistent G1 arrest. In contrast, deletion of the SIC1 gene encoding a cyclin-dependent kinase inhibitor fully suppressed the observed block of G1 exit in hog1Δ cells. Moreover, the Sic1 protein was stabilized in arsenite-treated hog1Δ cells. Interestingly, Sic1-dependent persistent G1 arrest was also observed in hog1Δ cells during hyperosmotic stress. Taken together, our data point to an important role of the Hog1 kinase in adaptation to stress-induced G1 cell cycle arrest.


2018 ◽  
Vol 86 (4) ◽  
Author(s):  
Bikash Sahay ◽  
Kathleen Bashant ◽  
Nicole L. J. Nelson ◽  
Rebeca L. Patsey ◽  
Shiva Kumar Gadila ◽  
...  

ABSTRACTHost genotype influences the severity of murine Lyme borreliosis, caused by the spirochetal bacteriumBorrelia burgdorferi. C57BL/6 (B6) mice develop mild Lyme arthritis, whereas C3H/HeN (C3H) mice develop severe Lyme arthritis. Differential expression of interleukin 10 (IL-10) has long been associated with mouse strain differences in Lyme pathogenesis; however, the underlying mechanism(s) of this genotype-specific IL-10 regulation remained elusive. Herein we reveal a cAMP-mediated mechanism of IL-10 regulation in B6 macrophages that is substantially diminished in C3H macrophages. Under cAMP and CD14-p38 mitogen-activated protein kinase (MAPK) signaling, B6 macrophages stimulated withB. burgdorferiproduce increased amounts of IL-10 and decreased levels of arthritogenic cytokines, including tumor necrosis factor (TNF). cAMP relaxes chromatin, while p38 increases binding of the transcription factors signal transducer and activator of transcription 3 (STAT3) and specific protein 1 (SP1) to the IL-10 promoter, leading to increased IL-10 production in B6 bone marrow-derived monocytes (BMDMs). Conversely, macrophages derived from arthritis-susceptible C3H mice possess significantly less endogenous cAMP, produce less IL-10, and thus are ill equipped to mitigate the damaging consequences ofB. burgdorferi-induced TNF. Intriguingly, an altered balance between anti-inflammatory and proinflammatory cytokines and CD14-dependent regulatory mechanisms also is operative in primary human peripheral blood-derived monocytes, providing potential insight into the clinical spectrum of human Lyme disease. In line with this notion, we have demonstrated that cAMP-enhancing drugs increase IL-10 production in myeloid cells, thus curtailing inflammation associated with murine Lyme borreliosis. Discovery of novel treatments or repurposing of FDA-approved cAMP-modulating medications may be a promising avenue for treatment of patients with adverse clinical outcomes, including certain post-Lyme complications, in whom dysregulated immune responses may play a role.


Sign in / Sign up

Export Citation Format

Share Document