scholarly journals Divergent Subunit Interactions among Fungal mRNA 5′-Capping Machineries

2002 ◽  
Vol 1 (3) ◽  
pp. 448-457 ◽  
Author(s):  
Toshimitsu Takagi ◽  
Eun-Jung Cho ◽  
Rozmin T. K. Janoo ◽  
Vladimir Polodny ◽  
Yasutaka Takase ◽  
...  

ABSTRACT The Saccharomyces cerevisiae mRNA capping enzyme consists of two subunits: an RNA 5′-triphosphatase (RTPase) and GTP::mRNA guanylyltransferase (GTase). The GTase subunit (Ceg1) binds to the phosphorylated carboxyl-terminal domain of the largest subunit (CTD-P) of RNA polymerase II (pol II), coupling capping with transcription. Ceg1 bound to the CTD-P is inactive unless allosterically activated by interaction with the RTPase subunit (Cet1). For purposes of comparison, we characterize here the related GTases and RTPases from the yeasts Schizosaccharomyces pombe and Candida albicans. Surprisingly, the S. pombe capping enzyme subunits do not interact with each other. Both can independently interact with CTD-P of pol II, and the GTase is not repressed by CTD-P binding. The S. pombe RTPase gene (pct1 +) is essential for viability. Pct1 can replace the S. cerevisiae RTPase when GTase activity is supplied by the S. pombe or mouse enzymes but not by the S. cerevisiae GTase. The C. albicans capping enzyme subunits do interact with each other. However, this interaction is not essential in vivo. Our results reveal an unexpected diversity among the fungal capping machineries.

2000 ◽  
Vol 20 (24) ◽  
pp. 9307-9316 ◽  
Author(s):  
Yasutaka Takase ◽  
Toshimitsu Takagi ◽  
Philip B. Komarnitsky ◽  
Stephen Buratowski

ABSTRACT The Saccharomyces cerevisiae mRNA capping enzyme consists of two subunits: an RNA 5′-triphosphatase (Cet1) and an mRNA guanylyltransferase (Ceg1). In yeast, the capping enzyme is recruited to the RNA polymerase II (Pol II) transcription complex via an interaction between Ceg1 and the phosphorylated carboxy-terminal domain of the Pol II largest subunit. Previous in vitro experiments showed that the Cet1 carboxy-terminal region (amino acids 265 to 549) carries RNA triphosphatase activity, while the region containing amino acids 205 to 265 of Cet1 has two functions: it mediates dimerization with Ceg1, but it also allosterically activates Ceg1 guanylyltransferase activity in the context of Pol II binding. Here we characterize several Cet1 mutants in vivo. Mutations or deletions of Cet1 that disrupt interaction with Ceg1 are lethal, showing that this interaction is essential for proper capping enzyme function in vivo. Remarkably, the interaction region of Ceg1 becomes completely dispensable when Ceg1 is substituted by the mouse guanylyltransferase, which does not require allosteric activation by Cet1. Although no interaction between Cet1 and mouse guanylyltransferase is detectable, both proteins are present at yeast promoters in vivo. These results strongly suggest that the primary physiological role of the Ceg1-Cet1 interaction is to allosterically activate Ceg1, rather than to recruit Cet1 to the Pol II complex.


2008 ◽  
Vol 28 (12) ◽  
pp. 3979-3994 ◽  
Author(s):  
Lu Gao ◽  
David S. Gross

ABSTRACT It is well accepted that for transcriptional silencing in budding yeast, the evolutionarily conserved lysine deacetylase Sir2, in concert with its partner proteins Sir3 and Sir4, establishes a chromatin structure that prevents RNA polymerase II (Pol II) transcription. However, the mechanism of repression remains controversial. Here, we show that the recruitment of Pol II, as well as that of the general initiation factors TBP and TFIIH, occurs unimpeded to the silent HMR a 1 and HMLα1/HMLα2 mating promoters. This, together with the fact that Pol II is Ser5 phosphorylated, implies that SIR-mediated silencing is permissive to both preinitiation complex (PIC) assembly and transcription initiation. In contrast, the occupancy of factors critical to both mRNA capping and Pol II elongation, including Cet1, Abd1, Spt5, Paf1C, and TFIIS, is virtually abolished. In agreement with this, efficiency of silencing correlates not with a restriction in Pol II promoter occupancy but with a restriction in capping enzyme recruitment. These observations pinpoint the transition between polymerase initiation and elongation as the step targeted by Sir2 and indicate that transcriptional silencing is achieved through the differential accessibility of initiation and capping/elongation factors to chromatin. We compare Sir2-mediated transcriptional silencing to a second repression mechanism, mediated by Tup1. In contrast to Sir2, Tup1 prevents TBP, Pol II, and TFIIH recruitment to the HMLα1 promoter, thereby abrogating PIC formation.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Robert F Levendosky ◽  
Anton Sabantsev ◽  
Sebastian Deindl ◽  
Gregory D Bowman

Despite their canonical two-fold symmetry, nucleosomes in biological contexts are often asymmetric: functionalized with post-translational modifications (PTMs), substituted with histone variants, and even lacking H2A/H2B dimers. Here we show that the Widom 601 nucleosome positioning sequence can produce hexasomes in a specific orientation on DNA, providing a useful tool for interrogating chromatin enzymes and allowing for the generation of nucleosomes with precisely defined asymmetry. Using this methodology, we demonstrate that the Chd1 chromatin remodeler from Saccharomyces cerevisiae requires H2A/H2B on the entry side for sliding, and thus, unlike the back-and-forth sliding observed for nucleosomes, Chd1 shifts hexasomes unidirectionally. Chd1 takes part in chromatin reorganization surrounding transcribing RNA polymerase II (Pol II), and using asymmetric nucleosomes we show that ubiquitin-conjugated H2B on the entry side stimulates nucleosome sliding by Chd1. We speculate that biased nucleosome and hexasome sliding due to asymmetry contributes to the packing of arrays observed in vivo.


2019 ◽  
Author(s):  
Schuyler Lee ◽  
Haolin Liu ◽  
Ryan Hill ◽  
Xia Hong ◽  
Xinjian Liu ◽  
...  

AbstractMore than 30% of genes in higher eukaryotes are regulated by promoter-proximal pausing of RNA polymerase II (Pol II). Phosphorylation of Pol II-CTD by positive transcription elongation factor (P-TEFb) is a necessary precursor event that enables productive transcription elongation. The exact mechanism on how the sequestered P-TEFb is released from the 7SK snRNP complex and recruited to Pol II-CTD remains unknown. In this report, we reveal methylphosphate capping enzyme (MePCE), a core component of the 7SK snRNP complex, as the cognate substrate for Jumonji domain-containing 6 (JMJD6)’s novel proteolytic function. Our evidences consist of a crystal structure of JMJD6 bound to methyl-arginine, enzymatic assays of JMJD6 cleaving MePCE in vivo and in vitro, binding assays, and downstream effects of Jmjd6 knockout and overexpression on Pol II-CTD phosphorylation. We propose that JMJD6 assists bromodomain containing 4 (BRD4) to recruit P-TEFb to Pol II-CTD by disrupting the 7SK snRNP complex.


2003 ◽  
Vol 23 (4) ◽  
pp. 1368-1378 ◽  
Author(s):  
D. L. Lindstrom ◽  
S. L. Squazzo ◽  
N. Muster ◽  
T. A. Burckin ◽  
K. C. Wachter ◽  
...  

ABSTRACT During transcription elongation, eukaryotic RNA polymerase II (Pol II) must contend with the barrier presented by nucleosomes. The conserved Spt4-Spt5 complex has been proposed to regulate elongation through nucleosomes by Pol II. To help define the mechanism of Spt5 function, we have characterized proteins that coimmunopurify with Spt5. Among these are the general elongation factors TFIIF and TFIIS as well as Spt6 and FACT, factors thought to regulate elongation through nucleosomes. Spt5 also coimmunopurified with the mRNA capping enzyme and cap methyltransferase, and spt4 and spt5 mutations displayed genetic interactions with mutations in capping enzyme genes. Additionally, we found that spt4 and spt5 mutations lead to accumulation of unspliced pre-mRNA. Spt5 also copurified with several previously unstudied proteins; we demonstrate that one of these is encoded by a new member of the SPT gene family. Finally, by immunoprecipitating these factors we found evidence that Spt5 participates in at least three Pol II complexes. These observations provide new evidence of roles for Spt4-Spt5 in pre-mRNA processing and transcription elongation.


1998 ◽  
Vol 273 (16) ◽  
pp. 9577-9585 ◽  
Author(s):  
C. Kiong Ho ◽  
Verl Sriskanda ◽  
Susan McCracken ◽  
David Bentley ◽  
Beate Schwer ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Akhilendra Pratap Bharati ◽  
Neha Singh ◽  
Vikash Kumar ◽  
Md. Kashif ◽  
Amit Kumar Singh ◽  
...  

2017 ◽  
Vol 37 (13) ◽  
Author(s):  
Rwik Sen ◽  
Amala Kaja ◽  
Jannatul Ferdoush ◽  
Shweta Lahudkar ◽  
Priyanka Barman ◽  
...  

ABSTRACT We have recently demonstrated that an mRNA capping enzyme, Cet1, impairs promoter-proximal accumulation/pausing of RNA polymerase II (Pol II) independently of its capping activity in Saccharomyces cerevisiae to control transcription. However, it is still unknown how Pol II pausing is regulated by Cet1. Here, we show that Cet1's N-terminal domain (NTD) promotes the recruitment of FACT (facilitates chromatin transcription that enhances the engagement of Pol II into transcriptional elongation) to the coding sequence of an active gene, ADH1, independently of mRNA-capping activity. Absence of Cet1's NTD decreases FACT targeting to ADH1 and consequently reduces the engagement of Pol II in transcriptional elongation, leading to promoter-proximal accumulation of Pol II. Similar results were also observed at other genes. Consistently, Cet1 interacts with FACT. Collectively, our results support the notion that Cet1's NTD promotes FACT targeting to the active gene independently of mRNA-capping activity in facilitating Pol II's engagement in transcriptional elongation, thus deciphering a novel regulatory pathway of gene expression.


2000 ◽  
Vol 74 (12) ◽  
pp. 5486-5494 ◽  
Author(s):  
C. Kiong Ho ◽  
Alexandra Martins ◽  
Stewart Shuman

ABSTRACT Virus-encoded mRNA capping enzymes are attractive targets for antiviral therapy, but functional studies have been limited by the lack of genetically tractable in vivo systems that focus exclusively on the RNA-processing activities of the viral proteins. Here we have developed such a system by engineering a viral capping enzyme—vaccinia virus D1(1-545)p, an RNA triphosphatase and RNA guanylyltransferase—to function in the budding yeast Saccharomyces cerevisiae in lieu of the endogenous fungal triphosphatase (Cet1p) and guanylyltransferase (Ceg1p). This was accomplished by fusion of D1(1-545)p to the C-terminal guanylyltransferase domain of mammalian capping enzyme, Mce1(211-597)p, which serves as a vehicle to target the viral capping enzyme to the RNA polymerase II elongation complex. An inactivating mutation (K294A) of the mammalian guanylyltransferase active site in the fusion protein had no impact on genetic complementation of cet1Δceg1Δ cells, thus proving that (i) the viral guanylyltransferase was active in vivo and (ii) the mammalian domain can serve purely as a chaperone to direct other proteins to the transcription complex. Alanine scanning had identified five amino acids of vaccinia virus capping enzyme—Glu37, Glu39, Arg77, Glu192, and Glu194—that are essential for γ phosphate cleavage in vitro. Here we show that the introduction of mutation E37A, R77A, or E192A into the fusion protein abrogates RNA triphosphatase function in vivo. The essential residues are located within three motifs that define a family of viral and fungal metal-dependent phosphohydrolases with a distinctive capacity to hydrolyze nucleoside triphosphates to nucleoside diphosphates in the presence of manganese or cobalt. The acidic residues Glu37, Glu39, and Glu192 likely comprise the metal-binding site of vaccinia virus triphosphatase, insofar as their replacement by glutamine abolishes the RNA triphosphatase and ATPase activities.


2010 ◽  
Vol 30 (10) ◽  
pp. 2353-2364 ◽  
Author(s):  
Susanne Schneider ◽  
Yi Pei ◽  
Stewart Shuman ◽  
Beate Schwer

ABSTRACT An interaction network connecting mRNA capping enzymes, the RNA polymerase II (Pol II) carboxyl-terminal domain (CTD), elongation factor Spt5, and the Cdk7 and Cdk9 protein kinases is thought to comprise a transcription elongation checkpoint. A crux of this network is Spt5, which regulates early transcription elongation and has an imputed role in pre-mRNA processing via its physical association with capping enzymes. Schizosaccharomyces pombe Spt5 has a distinctive CTD composed of tandem nonapeptide repeats of the consensus sequence 1TPAWNSGSK9. The Spt5 CTD binds the capping enzymes and is a substrate for threonine phosphorylation by the Cdk9 kinase. Here we report that deletion of the S. pombe Spt5 CTD results in slow growth and aberrant cell morphology. The severity of the spt5-ΔCTD phenotype is exacerbated by truncation of the Pol II CTD and ameliorated by overexpression of the capping enzymes RNA triphosphatase and RNA guanylyltransferase. These results suggest that the Spt5 and Pol II CTDs play functionally overlapping roles in capping enzyme recruitment. We probed structure-activity relations of the Spt5 CTD by alanine scanning of the consensus nonapeptide. The T1A change abolished CTD phosphorylation by Cdk9 but did not affect CTD binding to the capping enzymes. The T1A and P2A mutations elicited cold-sensitive (cs) and temperature-sensitive (ts) growth defects and conferred sensitivity to growth inhibition by 6-azauracil that was exacerbated by partial truncations of the Pol II CTD. The T1A phenotypes were rescued by a phosphomimetic T1E change but not by capping enzyme overexpression. These results imply a positive role for Spt5 CTD phosphorylation in Pol Il transcription elongation in fission yeast, distinct from its capping enzyme interactions. Viability of yeast cells bearing both Spt5 CTD T1A and Pol II CTD S2A mutations heralds that the Cdk9 kinase has an essential target other than Spt5 and Pol II CTD-Ser2.


Sign in / Sign up

Export Citation Format

Share Document