scholarly journals The Chd1 chromatin remodeler shifts hexasomes unidirectionally

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Robert F Levendosky ◽  
Anton Sabantsev ◽  
Sebastian Deindl ◽  
Gregory D Bowman

Despite their canonical two-fold symmetry, nucleosomes in biological contexts are often asymmetric: functionalized with post-translational modifications (PTMs), substituted with histone variants, and even lacking H2A/H2B dimers. Here we show that the Widom 601 nucleosome positioning sequence can produce hexasomes in a specific orientation on DNA, providing a useful tool for interrogating chromatin enzymes and allowing for the generation of nucleosomes with precisely defined asymmetry. Using this methodology, we demonstrate that the Chd1 chromatin remodeler from Saccharomyces cerevisiae requires H2A/H2B on the entry side for sliding, and thus, unlike the back-and-forth sliding observed for nucleosomes, Chd1 shifts hexasomes unidirectionally. Chd1 takes part in chromatin reorganization surrounding transcribing RNA polymerase II (Pol II), and using asymmetric nucleosomes we show that ubiquitin-conjugated H2B on the entry side stimulates nucleosome sliding by Chd1. We speculate that biased nucleosome and hexasome sliding due to asymmetry contributes to the packing of arrays observed in vivo.

2016 ◽  
Author(s):  
Robert F. Levendosky ◽  
Anton Sabantsev ◽  
Sebastian Deindl ◽  
Gregory D. Bowman

AbstractDespite their canonical two-fold symmetry, nucleosomes in biological contexts are often asymmetric: functionalized with post-translational modifications (PTMs), substituted with histone variants, and even lacking H2A/H2B dimers. Here we show that the Widom 601 nucleosome positioning sequence can be used to produce hexasomes in a specific orientation on DNA, which provide a useful tool for interrogating chromatin enzymes and allow for the generation of precisely defined asymmetry in nucleosomes. Using this methodology, we demonstrate that the Chd1 chromatin remodeler requires H2A/H2B on the entry side for sliding, and thus, unlike the back-and-forth sliding observed for nucleosomes, Chd1 shifts hexasomes unidirectionally. Chd1 takes part in chromatin reorganization surrounding transcribing RNA polymerase II (Pol II), and using asymmetric nucleosomes we show that ubiquitin-conjugated H2B on the entry side stimulates nucleosome sliding by Chd1. We speculate that biased nucleosome and hexasome sliding due to asymmetry contributes to the packing of arrays observed in vivo.


Author(s):  
Lucas Farnung ◽  
Moritz Ochmann ◽  
Maik Engeholm ◽  
Patrick Cramer

AbstractEfficient transcription of RNA polymerase II (Pol II) through nucleosomes requires the help of various factors. Here we show biochemically that Pol II transcription through a nucleosome is facilitated by the chromatin remodeler Chd1 and the histone chaperone FACT when the elongation factors Spt4/5 and TFIIS are present. We report cryo-EM structures of transcribing Saccharomyces cerevisiae Pol II−Spt4/5−nucleosome complexes with bound Chd1 or FACT. In the first structure, Pol II transcription exposes the proximal histone H2A−H2B dimer that is bound by Spt5. Pol II has also released the inhibitory DNA-binding region of Chd1 that is poised to pump DNA toward Pol II. In the second structure, Pol II has generated a partially unraveled nucleosome that binds FACT, which excludes Chd1 and Spt5. These results suggest that Pol II progression through a nucleosome activates Chd1, enables FACT binding and eventually triggers transfer of FACT together with histones to upstream DNA.


2021 ◽  
Author(s):  
Yunye Zhu ◽  
Irina O. Vvedenskaya ◽  
Bryce E. Nickels ◽  
Craig D. Kaplan

DNA sequence at Transcription Start Sites (TSSs) is a key determinant of initiation by RNA Polymerase II (Pol II). To function as a TSS, an initiation compatible sequence must be specified by a promoter in an appropriate chromatin context. We report the development of a method for quantitative analysis of transcription initiation by Pol II that involves construction of DNA libraries of barcoded promoter variants, production of RNA transcripts, and analysis of transcript 5' ends and transcript yields (Pol II MAssively Systematic Transcript End Readout, "Pol II MASTER"). Using Pol II MASTER, we measure the efficiency of transcription initiation during promoter scanning by Saccharomyces cerevisiae Pol II for ~1 million unique TSS sequences. Furthermore, we employ Pol II MASTER to determine how Pol II activity, known to widely alter TSS selection in vivo, alters TSS efficiencies across our promoter variants. Pol II MASTER recapitulates known critical qualities of Saccharomyces cerevisiae TSS -8, -1, and +1 positions while demonstrating that surrounding sequences modulate initiation efficiency over a wide range. We discover functional interactions between neighboring sequence positions, indicating that adjacent positions likely function together. We demonstrate that initiation efficiencies are altered for +1 A TSSs relative to +1 G TSSs when Pol II activity is perturbed through genetic means. Pol II MASTER provides data for predictive models of TSS initiation efficiency at genomic promoters.


2002 ◽  
Vol 1 (3) ◽  
pp. 448-457 ◽  
Author(s):  
Toshimitsu Takagi ◽  
Eun-Jung Cho ◽  
Rozmin T. K. Janoo ◽  
Vladimir Polodny ◽  
Yasutaka Takase ◽  
...  

ABSTRACT The Saccharomyces cerevisiae mRNA capping enzyme consists of two subunits: an RNA 5′-triphosphatase (RTPase) and GTP::mRNA guanylyltransferase (GTase). The GTase subunit (Ceg1) binds to the phosphorylated carboxyl-terminal domain of the largest subunit (CTD-P) of RNA polymerase II (pol II), coupling capping with transcription. Ceg1 bound to the CTD-P is inactive unless allosterically activated by interaction with the RTPase subunit (Cet1). For purposes of comparison, we characterize here the related GTases and RTPases from the yeasts Schizosaccharomyces pombe and Candida albicans. Surprisingly, the S. pombe capping enzyme subunits do not interact with each other. Both can independently interact with CTD-P of pol II, and the GTase is not repressed by CTD-P binding. The S. pombe RTPase gene (pct1 +) is essential for viability. Pct1 can replace the S. cerevisiae RTPase when GTase activity is supplied by the S. pombe or mouse enzymes but not by the S. cerevisiae GTase. The C. albicans capping enzyme subunits do interact with each other. However, this interaction is not essential in vivo. Our results reveal an unexpected diversity among the fungal capping machineries.


2001 ◽  
Vol 276 (15) ◽  
pp. 12266-12273 ◽  
Author(s):  
Wenxiang Wei ◽  
Dorjbal Dorjsuren ◽  
Yong Lin ◽  
Weiping Qin ◽  
Takahiro Nomura ◽  
...  

The general transcription factor IIF (TFIIF) assembled in the initiation complex, and RAP30 of TFIIF, have been shown to associate with RNA polymerase II (pol II), although it remains unclear which pol II subunit is responsible for the interaction. We examined whether TFIIF interacts with RNA polymerase II subunit 5 (RPB5), the exposed domain of which binds transcriptional regulatory factors such as hepatitis B virus X protein and a novel regulatory protein, RPB5-mediating protein. The results demonstrated that RPB5 directly binds RAP30in vitrousing purified recombinant proteins andin vivoin COS1 cells transiently expressing recombinant RAP30 and RPB5. The RAP30-binding region was mapped to the central region (amino acids (aa) 47–120) of RPB5, which partly overlaps the hepatitis B virus X protein-binding region. Although the middle part (aa 101–170) and the N-terminus (aa 1–100) of RAP30 independently bound RPB5, the latter was not involved in the RPB5 binding when RAP30 was present in TFIIF complex. Scanning of the middle part of RAP30 by clustered alanine substitutions and then point alanine substitutions pinpointed two residues critical for the RPB5 binding inin vitroandin vivoassays. Wild type but not mutants Y124A and Q131A of RAP30 coexpressed with FLAG-RAP74 efficiently recovered endogenous RPB5 to the FLAG-RAP74-bound anti-FLAG M2 resin. The recovered endogenous RPB5 is assembled in pol II as demonstrated immunologically. Interestingly, coexpression of the central region of RPB5 and wild type RAP30 inhibited recovery of endogenous pol II to the FLAG-RAP74-bound M2 resin, strongly suggesting that the RAP30-binding region of RPB5 inhibited the association of TFIIF and pol II. The exposed domain of RPB5 interacts with RAP30 of TFIIF and is important for the association between pol II and TFIIF.


2007 ◽  
Vol 27 (5) ◽  
pp. 1631-1648 ◽  
Author(s):  
Igor Chernukhin ◽  
Shaharum Shamsuddin ◽  
Sung Yun Kang ◽  
Rosita Bergström ◽  
Yoo-Wook Kwon ◽  
...  

ABSTRACT CTCF is a transcription factor with highly versatile functions ranging from gene activation and repression to the regulation of insulator function and imprinting. Although many of these functions rely on CTCF-DNA interactions, it is an emerging realization that CTCF-dependent molecular processes involve CTCF interactions with other proteins. In this study, we report the association of a subpopulation of CTCF with the RNA polymerase II (Pol II) protein complex. We identified the largest subunit of Pol II (LS Pol II) as a protein significantly colocalizing with CTCF in the nucleus and specifically interacting with CTCF in vivo and in vitro. The role of CTCF as a link between DNA and LS Pol II has been reinforced by the observation that the association of LS Pol II with CTCF target sites in vivo depends on intact CTCF binding sequences. “Serial” chromatin immunoprecipitation (ChIP) analysis revealed that both CTCF and LS Pol II were present at the β-globin insulator in proliferating HD3 cells but not in differentiated globin synthesizing HD3 cells. Further, a single wild-type CTCF target site (N-Myc-CTCF), but not the mutant site deficient for CTCF binding, was sufficient to activate the transcription from the promoterless reporter gene in stably transfected cells. Finally, a ChIP-on-ChIP hybridization assay using microarrays of a library of CTCF target sites revealed that many intergenic CTCF target sequences interacted with both CTCF and LS Pol II. We discuss the possible implications of our observations with respect to plausible mechanisms of transcriptional regulation via a CTCF-mediated direct link of LS Pol II to the DNA.


2001 ◽  
Vol 21 (8) ◽  
pp. 2736-2742 ◽  
Author(s):  
Joseph V. Geisberg ◽  
Frank C. Holstege ◽  
Richard A. Young ◽  
Kevin Struhl

ABSTRACT NC2 (Dr1-Drap1 or Bur6-Ydr1) has been characterized in vitro as a general negative regulator of RNA polymerase II (Pol II) transcription that interacts with TATA-binding protein (TBP) and inhibits its function. Here, we show that NC2 associates with promoters in vivo in a manner that correlates with transcriptional activity and with occupancy by basal transcription factors. NC2 rapidly associates with promoters in response to transcriptional activation, and it remains associated under conditions in which transcription is blocked after assembly of the Pol II preinitiation complex. NC2 positively and negatively affects approximately 17% of Saccharomyces cerevisiaegenes in a pattern that resembles the response to general environmental stress. Relative to TBP, NC2 occupancy is high at promoters where NC2 is positively required for normal levels of transcription. Thus, NC2 is associated with the Pol II preinitiation complex, and it can play a direct and positive role at certain promoters in vivo.


2004 ◽  
Vol 24 (7) ◽  
pp. 2863-2874 ◽  
Author(s):  
Thomas C. Tubon ◽  
William P. Tansey ◽  
Winship Herr

ABSTRACT The general transcription factor TFIIB is a highly conserved and essential component of the eukaryotic RNA polymerase II (pol II) transcription initiation machinery. It consists of a single polypeptide with two conserved structural domains: an amino-terminal zinc ribbon structure (TFIIBZR) and a carboxy-terminal core (TFIIBCORE). We have analyzed the role of the amino-terminal region of human TFIIB in transcription in vivo and in vitro. We identified a small nonconserved surface of the TFIIBZR that is required for pol II transcription in vivo and for different types of basal pol II transcription in vitro. Consistent with a general role in transcription, this TFIIBZR surface is directly involved in the recruitment of pol II to a TATA box-containing promoter. Curiously, although the amino-terminal human TFIIBZR domain can recruit both human pol II and yeast (Saccharomyces cerevisiae) pol II, the yeast TFIIB amino-terminal region recruits yeast pol II but not human pol II. Thus, a critical process in transcription from many different promoters—pol II recruitment—has changed in sequence specificity during eukaryotic evolution.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 254-254
Author(s):  
Xiaoying Bai ◽  
Joseph Lee ◽  
Jocelyn LeBlanc ◽  
Anna Sessa ◽  
Zhongan Yang ◽  
...  

Abstract Abstract 254 Vertebrate erythropoiesis is regulated by cell-specific transcription factors, RNA polymerase-associated basal machinery and chromatin remodeling factors. One critical chromatin factor is the transcriptional intermediary factor TIF1γ. Loss of TIF1γfunction in zebrafish mutant moonshine causes a profound anemia during embryogenesis, associated with a progressive decrease in expression of most erythroid mRNAs such as GATA1 and globin. TIF1γdeficiency has also been linked to TGF-βsignaling, although the in vivo mechanism for the anemia remains unclear. In an effort to find genes that interact with TIF1γ, we undertook a genetic suppressor screen in which we sought mutations in another gene that would restore blood to normal levels in the background of moonshine deficiency. Few suppressor screens have been done in vertebrate genetic models, and the haploid genetics of zebrafish was a great advantage for this screen. After screening 800 families of fish, two suppressor mutants, “eclipse” and “sunrise”, were found that could greatly rescue the erythroid defects in moonshine. The deficient gene in sunrise has been mapped to the locus of cdc73 (also known as parafibromin/HRPT2), a subunit of the PAF1 complex known to regulate RNA polymerase II (Pol II) elongation and chromatin modification. Furthermore, we have found that knocking down other subunits in the PAF1 complex also rescued the blood defect in moonshine, suggesting that PAF1 as a complex antagonizes TIF1γfunction during erythropoiesis. In yeast, PAF1 has been shown to physically or genetically interact with other elongation factors including DSIF, FACT and p-TEFb. We have found that knocking down DSIF, which is known to induce Pol II pausing during early elongation, also rescues moonshine. FACT and p-TEFb are both known to counteract DSIF to release Pol II from pausing, and knocking down FACT and p-TEFb caused the zebrafish to develop anemia. This strongly suggests that the erythroid defects in TIF1γdeficiency is caused by attenuated Pol II elongation. In an effort to understand the cell-specific phenotype of TIF1γdeficiency, we introduced a FLAG tagged TIF1γinto K562 erythroleukemia cells to pull down interacting proteins. Physical interactions were found among TIF1γ, FACT, p-TEFb and surprisingly the SCL hematopoietic transcription complex. The interaction with the SCL complex provides a cell-specific control over transcriptional elongation. The physical interactions, taken together with the genetic data, suggest a novel mechanism regulating erythropoiesis. TIF1γphysically and functionally links blood-specific transcription factors like SCL to Pol II-associated elongation machinery to regulate blood cell fate. In light of the recent discoveries of widespread Pol II stalling in the promoter proximal region in metazoan genomes, we speculate that similar mechanisms will regulate cell fates in other blood lineages as well as non-blood tissues. Disclosures: Zon: FATE Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Stemgent: Consultancy.


2007 ◽  
Vol 27 (13) ◽  
pp. 4891-4904 ◽  
Author(s):  
H. Karimi Kinyamu ◽  
Trevor K. Archer

ABSTRACT The 26S proteasome modulates steroid hormone receptor-dependent gene transcription at least in part by regulating turnover and recycling of receptor/transcriptional DNA complexes, thereby ensuring continued hormone response. For the glucocorticoid receptor (GR), inhibition of proteasome-mediated proteolysis or RNA interference-mediated depletion of specific proteasome subunits results in an increase in gene expression. To facilitate transcription, proteasome inhibition alters at least two features associated with modification of chromatin architecture and gene transcription. First, proteasome inhibition increases trimethyl histone H3K4 levels with a corresponding accumulation of this modification on GR-regulated promoters in vivo. Secondly, global levels of phosphorylated RNA polymerase II (Pol II) increase, together with hormone-dependent association of the phosphorylated Pol II, with the promoter and the body of the activated gene. We propose that apart from modulating receptor turnover, the proteasome directly influences both the transcription machinery and chromatin structure, factors integral to nuclear receptor-regulated gene transcription.


Sign in / Sign up

Export Citation Format

Share Document