scholarly journals A Yeast-Based Genetic System for Functional Analysis of Viral mRNA Capping Enzymes

2000 ◽  
Vol 74 (12) ◽  
pp. 5486-5494 ◽  
Author(s):  
C. Kiong Ho ◽  
Alexandra Martins ◽  
Stewart Shuman

ABSTRACT Virus-encoded mRNA capping enzymes are attractive targets for antiviral therapy, but functional studies have been limited by the lack of genetically tractable in vivo systems that focus exclusively on the RNA-processing activities of the viral proteins. Here we have developed such a system by engineering a viral capping enzyme—vaccinia virus D1(1-545)p, an RNA triphosphatase and RNA guanylyltransferase—to function in the budding yeast Saccharomyces cerevisiae in lieu of the endogenous fungal triphosphatase (Cet1p) and guanylyltransferase (Ceg1p). This was accomplished by fusion of D1(1-545)p to the C-terminal guanylyltransferase domain of mammalian capping enzyme, Mce1(211-597)p, which serves as a vehicle to target the viral capping enzyme to the RNA polymerase II elongation complex. An inactivating mutation (K294A) of the mammalian guanylyltransferase active site in the fusion protein had no impact on genetic complementation of cet1Δceg1Δ cells, thus proving that (i) the viral guanylyltransferase was active in vivo and (ii) the mammalian domain can serve purely as a chaperone to direct other proteins to the transcription complex. Alanine scanning had identified five amino acids of vaccinia virus capping enzyme—Glu37, Glu39, Arg77, Glu192, and Glu194—that are essential for γ phosphate cleavage in vitro. Here we show that the introduction of mutation E37A, R77A, or E192A into the fusion protein abrogates RNA triphosphatase function in vivo. The essential residues are located within three motifs that define a family of viral and fungal metal-dependent phosphohydrolases with a distinctive capacity to hydrolyze nucleoside triphosphates to nucleoside diphosphates in the presence of manganese or cobalt. The acidic residues Glu37, Glu39, and Glu192 likely comprise the metal-binding site of vaccinia virus triphosphatase, insofar as their replacement by glutamine abolishes the RNA triphosphatase and ATPase activities.

2003 ◽  
Vol 77 (13) ◽  
pp. 7300-7307 ◽  
Author(s):  
Nayanendu Saha ◽  
Stewart Shuman ◽  
Beate Schwer

ABSTRACT Structural differences between poxvirus and human mRNA capping enzymes recommend cap formation as a target for antipoxviral drug discovery. Genetic and pharmacologic analysis of the poxvirus capping enzymes requires in vivo assays in which the readout depends on the capacity of the viral enzyme to catalyze cap synthesis. Here we have used the budding yeast Saccharomyces cerevisiae as a genetic model for the study of poxvirus cap guanine-N7 methyltransferase. The S. cerevisiae capping system consists of separate triphosphatase (Cet1), guanylyltransferase (Ceg1), and methyltransferase (Abd1) components. All three activities are essential for cell growth. We report that the methyltransferase domain of vaccinia virus capping enzyme (composed of catalytic vD1-C and stimulatory vD12 subunits) can function in lieu of yeast Abd1. Coexpression of both vaccinia virus subunits is required for complementation of the growth of abd1Δ cells. Previously described mutations of vD1-C and vD12 that eliminate or reduce methyltransferase activity in vitro either abolish abd1Δ complementation or elicit conditional growth defects. We have used the yeast complementation assay as the primary screen in a new round of alanine scanning of the catalytic subunit. We thereby identified several new amino acids that are critical for cap methylation activity in vivo. Studies of recombinant proteins show that the lethal vD1-C mutations do not preclude heterodimerization with vD12 but either eliminate or reduce cap methyltransferase activity in vitro.


2000 ◽  
Vol 20 (24) ◽  
pp. 9307-9316 ◽  
Author(s):  
Yasutaka Takase ◽  
Toshimitsu Takagi ◽  
Philip B. Komarnitsky ◽  
Stephen Buratowski

ABSTRACT The Saccharomyces cerevisiae mRNA capping enzyme consists of two subunits: an RNA 5′-triphosphatase (Cet1) and an mRNA guanylyltransferase (Ceg1). In yeast, the capping enzyme is recruited to the RNA polymerase II (Pol II) transcription complex via an interaction between Ceg1 and the phosphorylated carboxy-terminal domain of the Pol II largest subunit. Previous in vitro experiments showed that the Cet1 carboxy-terminal region (amino acids 265 to 549) carries RNA triphosphatase activity, while the region containing amino acids 205 to 265 of Cet1 has two functions: it mediates dimerization with Ceg1, but it also allosterically activates Ceg1 guanylyltransferase activity in the context of Pol II binding. Here we characterize several Cet1 mutants in vivo. Mutations or deletions of Cet1 that disrupt interaction with Ceg1 are lethal, showing that this interaction is essential for proper capping enzyme function in vivo. Remarkably, the interaction region of Ceg1 becomes completely dispensable when Ceg1 is substituted by the mouse guanylyltransferase, which does not require allosteric activation by Cet1. Although no interaction between Cet1 and mouse guanylyltransferase is detectable, both proteins are present at yeast promoters in vivo. These results strongly suggest that the primary physiological role of the Ceg1-Cet1 interaction is to allosterically activate Ceg1, rather than to recruit Cet1 to the Pol II complex.


2002 ◽  
Vol 1 (3) ◽  
pp. 448-457 ◽  
Author(s):  
Toshimitsu Takagi ◽  
Eun-Jung Cho ◽  
Rozmin T. K. Janoo ◽  
Vladimir Polodny ◽  
Yasutaka Takase ◽  
...  

ABSTRACT The Saccharomyces cerevisiae mRNA capping enzyme consists of two subunits: an RNA 5′-triphosphatase (RTPase) and GTP::mRNA guanylyltransferase (GTase). The GTase subunit (Ceg1) binds to the phosphorylated carboxyl-terminal domain of the largest subunit (CTD-P) of RNA polymerase II (pol II), coupling capping with transcription. Ceg1 bound to the CTD-P is inactive unless allosterically activated by interaction with the RTPase subunit (Cet1). For purposes of comparison, we characterize here the related GTases and RTPases from the yeasts Schizosaccharomyces pombe and Candida albicans. Surprisingly, the S. pombe capping enzyme subunits do not interact with each other. Both can independently interact with CTD-P of pol II, and the GTase is not repressed by CTD-P binding. The S. pombe RTPase gene (pct1 +) is essential for viability. Pct1 can replace the S. cerevisiae RTPase when GTase activity is supplied by the S. pombe or mouse enzymes but not by the S. cerevisiae GTase. The C. albicans capping enzyme subunits do interact with each other. However, this interaction is not essential in vivo. Our results reveal an unexpected diversity among the fungal capping machineries.


2007 ◽  
Vol 27 (13) ◽  
pp. 4641-4651 ◽  
Author(s):  
Junjiang Fu ◽  
Ho-Geun Yoon ◽  
Jun Qin ◽  
Jiemin Wong

ABSTRACT P-TEFb, comprised of CDK9 and a cyclin T subunit, is a global transcriptional elongation factor important for most RNA polymerase II (pol II) transcription. P-TEFb facilitates transcription elongation in part by phosphorylating Ser2 of the heptapeptide repeat of the carboxy-terminal domain (CTD) of the largest subunit of pol II. Previous studies have shown that P-TEFb is subjected to negative regulation by forming an inactive complex with 7SK small RNA and HEXIM1. In an effort to investigate the molecular mechanism by which corepressor N-CoR mediates transcription repression, we identified HEXIM1 as an N-CoR-interacting protein. This finding led us to test whether the P-TEFb complex is regulated by acetylation. We demonstrate that CDK9 is an acetylated protein in cells and can be acetylated by p300 in vitro. Through both in vitro and in vivo assays, we identified lysine 44 of CDK9 as a major acetylation site. We present evidence that CDK9 is regulated by N-CoR and its associated HDAC3 and that acetylation of CDK9 affects its ability to phosphorylate the CTD of pol II. These results suggest that acetylation of CDK9 is an important posttranslational modification that is involved in regulating P-TEFb transcriptional elongation function.


1990 ◽  
Vol 10 (10) ◽  
pp. 5433-5441
Author(s):  
B Y Ahn ◽  
P D Gershon ◽  
E V Jones ◽  
B Moss

Eucaryotic transcription factors that stimulate RNA polymerase II by increasing the efficiency of elongation of specifically or randomly initiated RNA chains have been isolated and characterized. We have identified a 30-kilodalton (kDa) vaccinia virus-encoded protein with apparent homology to SII, a 34-kDa mammalian transcriptional elongation factor. In addition to amino acid sequence similarities, both proteins contain C-terminal putative zinc finger domains. Identification of the gene, rpo30, encoding the vaccinia virus protein was achieved by using antibody to the purified viral RNA polymerase for immunoprecipitation of the in vitro translation products of in vivo-synthesized early mRNA selected by hybridization to cloned DNA fragments of the viral genome. Western immunoblot analysis using antiserum made to the vaccinia rpo30 protein expressed in bacteria indicated that the 30-kDa protein remains associated with highly purified viral RNA polymerase. Thus, the vaccinia virus protein, unlike its eucaryotic homolog, is an integral RNA polymerase subunit rather than a readily separable transcription factor. Further studies showed that the expression of rpo30 is regulated by dual early and later promoters.


2019 ◽  
Vol 116 (45) ◽  
pp. 22573-22582 ◽  
Author(s):  
Rina Fujiwara ◽  
Nivedita Damodaren ◽  
Jeremy E. Wilusz ◽  
Kenji Murakami

After synthesis of a short nascent RNA, RNA polymerase II (pol II) dissociates general transcription factors (GTFs; TFIIA, TFIIB, TBP, TFIIE, TFIIF, and TFIIH) and escapes the promoter, but many of the mechanistic details of this process remain unclear. Here we developed an in vitro transcription system from the yeast Saccharomyces cerevisiae that allows conversion of the preinitiation complex (PIC) to bona fide initially transcribing complex (ITC), elongation complex (EC), and reinitiation complex (EC+ITC). By biochemically isolating postinitiation complexes stalled at different template positions, we have determined the timing of promoter escape and the composition of protein complexes associated with different lengths of RNA. Almost all of the postinitiation complexes retained the GTFs when pol II was stalled at position +27 relative to the transcription start site, whereas most complexes had completed promoter escape when stalled at +49. This indicates that GTFs remain associated with pol II much longer than previously expected. Nevertheless, the long-persisting transcription complex containing RNA and all of the GTFs is unstable and is susceptible to extensive backtracking of pol II. Addition of the capping enzyme and/or Spt4/5 significantly increased the frequency of promoter escape as well as assembly of a follow-on PIC at the promoter for reinitiation. These data indicate that elongation factors play an important role in promoter escape and that ejection of TFIIB from the RNA exit tunnel of pol II by the growing nascent RNA is not sufficient to complete promoter escape.


2008 ◽  
Vol 139 (2_suppl) ◽  
pp. P92-P93
Author(s):  
James Russell Tysome ◽  
Ghassan Alusi ◽  
Nick Lemoine ◽  
Yaohe Wang

Problem Oncolytic viral therapy a promising new strategy for the treatment of cancer and an oncolytic adenovirus was first licensed for head and neck squamous cell carcinoma (HNSCC). However, the outcomes of clinical trials with viral monotherapy have been disappointing. Oncolytic vaccinia virus represents an attractive alternative as its replication is less dependent than adenovirus on the genetic make-up of tumor cells and it has been used safely as the smallpox vaccine in millions of patients. Methods The potency and replication of vaccinia virus and adenovirus were compared in a panel of HNSCC cell lines in vitro before assessing the tumor selectivity of systemically delivered vaccinia virus in vivo. In order to increase antitumor potency, a novel vaccinia virus expressing the angiogenesis inhibitory endostatin-angiostatin fusion protein was constructed. The expression and function of this protein was confirmed in vitro and antitumor efficacy assessed in vivo. Results Oncolytic vaccinia virus was more potent than adenovirus against all HNSCC cell lines and displayed high selectivity for cancer cells, sparing normal cells both in vitro and in animal tumour models in vivo. Vaccinia virus expressing the endostatin-angiostatin fusion protein inhibited new blood vessel formation as well as tumour growth by oncolysis. The protein was expressed in virus-infected HNSCC cells and demonstrated function by the inhibition of human umbilical vein epithelial cell proliferation and tube formation in vitro. Treatment of nude mice bearing FaDu HNSCC xenografts significantly prolonged survival when compared to the oncolytic adenovirus ONYX-015 used previously for HNSCC. Conclusion This novel vaccinia virus is a promising therapeutic agent for HNSCC, which improved survival in tumour bearing mice and requires further evaluation in vivo. Significance The combination of an oncolytic vaccinia virus that delivers tumor-specific angiogenesis inhibition may prove to be an effective treatment for patients with HNSCC, with the potential for systemic delivery to treat metastatic disease. Support Cancer Research UK, Royal College of Surgeons of England, Barts and the London Trustees.


1990 ◽  
Vol 10 (10) ◽  
pp. 5433-5441 ◽  
Author(s):  
B Y Ahn ◽  
P D Gershon ◽  
E V Jones ◽  
B Moss

Eucaryotic transcription factors that stimulate RNA polymerase II by increasing the efficiency of elongation of specifically or randomly initiated RNA chains have been isolated and characterized. We have identified a 30-kilodalton (kDa) vaccinia virus-encoded protein with apparent homology to SII, a 34-kDa mammalian transcriptional elongation factor. In addition to amino acid sequence similarities, both proteins contain C-terminal putative zinc finger domains. Identification of the gene, rpo30, encoding the vaccinia virus protein was achieved by using antibody to the purified viral RNA polymerase for immunoprecipitation of the in vitro translation products of in vivo-synthesized early mRNA selected by hybridization to cloned DNA fragments of the viral genome. Western immunoblot analysis using antiserum made to the vaccinia rpo30 protein expressed in bacteria indicated that the 30-kDa protein remains associated with highly purified viral RNA polymerase. Thus, the vaccinia virus protein, unlike its eucaryotic homolog, is an integral RNA polymerase subunit rather than a readily separable transcription factor. Further studies showed that the expression of rpo30 is regulated by dual early and later promoters.


2019 ◽  
Author(s):  
Schuyler Lee ◽  
Haolin Liu ◽  
Ryan Hill ◽  
Xia Hong ◽  
Xinjian Liu ◽  
...  

AbstractMore than 30% of genes in higher eukaryotes are regulated by promoter-proximal pausing of RNA polymerase II (Pol II). Phosphorylation of Pol II-CTD by positive transcription elongation factor (P-TEFb) is a necessary precursor event that enables productive transcription elongation. The exact mechanism on how the sequestered P-TEFb is released from the 7SK snRNP complex and recruited to Pol II-CTD remains unknown. In this report, we reveal methylphosphate capping enzyme (MePCE), a core component of the 7SK snRNP complex, as the cognate substrate for Jumonji domain-containing 6 (JMJD6)’s novel proteolytic function. Our evidences consist of a crystal structure of JMJD6 bound to methyl-arginine, enzymatic assays of JMJD6 cleaving MePCE in vivo and in vitro, binding assays, and downstream effects of Jmjd6 knockout and overexpression on Pol II-CTD phosphorylation. We propose that JMJD6 assists bromodomain containing 4 (BRD4) to recruit P-TEFb to Pol II-CTD by disrupting the 7SK snRNP complex.


Sign in / Sign up

Export Citation Format

Share Document