scholarly journals Yeast and Human RNA Polymerase II Elongation Complexes: Evidence for Functional Differences and Postinitiation Recruitment of Factors

2003 ◽  
Vol 2 (2) ◽  
pp. 318-327 ◽  
Author(s):  
Timothy S. Pardee ◽  
Mohamed A. Ghazy ◽  
Alfred S. Ponticelli

ABSTRACT Immobilized DNA templates, glycerol gradient centrifugation, and native gel analysis were utilized to isolate and compare functional RNA polymerase II (RNAPII) elongation complexes from Saccharomyces cerevisiae and human cell nuclear extracts. Yeast elongation complexes blocked by incorporation of 3′-O-methyl-GTP into the nascent transcript exhibited a sedimentation coefficient of 35S, were less tightly associated to the template than their human counterparts, and displayed no detectable 3′-5′ exonuclease activity on the associated transcript. In contrast, blocked human elongation complexes were more tightly bound to the template, and multiple forms were identified, with the largest exhibiting a sedimentation coefficient of 60S. Analysis of the associated transcripts revealed that a subset of the human elongation complexes exhibited strong 3′-5′ exonuclease activity. Although isolated human preinitiation complexes were competent for efficient transcription, their ability to generate 60S elongation complexes was strikingly impaired. These findings demonstrate functional and size differences between S. cerevisiae and human RNAPII elongation complexes and support the view that the formation of mature elongation complexes involves recruitment of nuclear factors after the initiation of transcription.

2007 ◽  
Vol 82 (3) ◽  
pp. 1118-1127 ◽  
Author(s):  
Jinhong Chang ◽  
Xingcao Nie ◽  
Ho Eun Chang ◽  
Ziying Han ◽  
John Taylor

ABSTRACT Previous studies have indicated that the replication of the RNA genome of hepatitis delta virus (HDV) involves redirection of RNA polymerase II (Pol II), a host enzyme that normally uses DNA as a template. However, there has been some controversy about whether in one part of this HDV RNA transcription, a polymerase other than Pol II is involved. The present study applied a recently described cell system (293-HDV) of tetracycline-inducible HDV RNA replication to provide new data regarding the involvement of host polymerases in HDV transcription. The data generated with a nuclear run-on assay demonstrated that synthesis not only of genomic RNA but also of its complement, the antigenome, could be inhibited by low concentrations of amanitin specific for Pol II transcription. Subsequent studies used immunoprecipitation and rate-zonal sedimentation of nuclear extracts together with double immunostaining of 293-HDV cells, in order to examine the associations between Pol II and HDV RNAs, as well as the small delta antigen, an HDV-encoded protein known to be essential for replication. Findings include evidence that HDV replication is somehow able to direct the available delta antigen to sites in the nucleoplasm, almost exclusively colocalized with Pol II in what others have described as transcription factories.


1988 ◽  
Vol 8 (10) ◽  
pp. 4028-4040 ◽  
Author(s):  
N Nakajima ◽  
M Horikoshi ◽  
R G Roeder

Selective and accurate transcription of purified genes by RNA polymerase II requires multiple factors. The factor designated TFIID was purified extensively from HeLa cell nuclear extracts by using a simple and novel complementation assay. Thus, TFIID was preferentially inactivated by mild heat treatment of a nuclear extract, and supplementation of the heat-treated extract with TFIID-containing fractions restored adenovirus major late (ML) promoter-dependent transcription. By using this assay, TFIID was purified approximately 300-fold by conventional chromatographic methods. The most purified TFIID fraction was demonstrated to be required for transcription of a number of other cellular and viral class II genes. This factor showed specific interactions with both the adenovirus ML promoter and a human heat shock 70 (hsp-70) promoter. On the ML promoter, the DNase I-protected region extended from around position -40 to position +35, although some discontinuities (and associated hypersensitive sites) were apparent near the initiation site and near position +27; the upstream and downstream boundaries of the TFIID-binding site were also confirmed by exonuclease III digestion experiments. In contrast to these results, the DNase I-protected regions on the human hsp-70 promoter were confined to a smaller area that extended from positions -35 to -19. DNase I hypersensitive sites were observed in both the adenovirus ML and hsp-70 promoters, most notably in the region at position -47. These results indicate either that there are different forms of TFIID or that a single TFIID can interact differently with distinct promoters.


2012 ◽  
Vol 41 (3) ◽  
pp. 1797-1806 ◽  
Author(s):  
Eleanor White ◽  
Kinga Kamieniarz-Gdula ◽  
Michael J. Dye ◽  
Nick J. Proudfoot

1992 ◽  
Vol 12 (4) ◽  
pp. 1639-1651 ◽  
Author(s):  
S C Batson ◽  
R Sundseth ◽  
C V Heath ◽  
M Samuels ◽  
U Hansen

We have studied the initiation of transcription in vitro by RNA polymerase II on simian virus 40 (SV40) minichromosomal templates isolated from infected cells. The efficiency and pattern of transcription from the chromatin templates were compared with those from viral DNA templates by using two in vitro transcription systems, either HeLa whole-cell extract or basal transcription factors, RNA polymerase II, and one of two SV40 promoter-binding transcription factors, LSF and Sp1. Dramatic increases in numbers of transcripts upon addition of transcription extract and different patterns of usage of the multiple SV40 initiation sites upon addition of Sp1 versus LSF strongly suggested that transcripts were being initiated from the minichromosomal templates in vitro. That the majority of transcripts from the minichromosomes were due to initiation de novo was demonstrated by the efficient transcription observed in the presence of alpha-amanitin, which inhibited minichromosome-associated RNA polymerase II, and an alpha-amanitin-resistant RNA polymerase II, which initiated transcription in vitro. The pattern of transcription from the SV40 late and early promoters on the minichromosomal templates was similar to the in vivo pattern of transcription during the late stages of viral infection and was distinct from the pattern of transcription generated from viral DNA in vitro. In particular, the late promoter of the minichromosomal templates was transcribed with high efficiency, similar to viral DNA templates, while the early-early promoter of the minichromosomal templates was inhibited 10- to 15-fold. Finally, the number of minichromosomes competent to initiate transcription in vitro exceeded the amount actively being transcribed in vivo.


2006 ◽  
Vol 26 (7) ◽  
pp. 2688-2696 ◽  
Author(s):  
Eric J. Steinmetz ◽  
Sarah B. H. Ng ◽  
Joseph P. Cloute ◽  
David A. Brow

ABSTRACT Most eukaryotic genes are transcribed by RNA polymerase II (Pol II), including those that produce mRNAs and many noncoding functional RNAs. Proper expression of these genes requires efficient termination by Pol II to avoid transcriptional interference and synthesis of extended, nonfunctional RNAs. We previously described a pathway for yeast Pol II termination that involves recognition of an element in the nascent transcript by the essential RNA-binding protein Nrd1. The Nrd1-dependent pathway appears to be used primarily for nonpolyadenylated transcripts, such as the small nuclear and small nucleolar RNAs (snoRNAs). mRNAs are thought to use a distinct pathway that is coupled to cleavage and polyadenylation of the transcript. Here we show that the terminator elements for two yeast snoRNA genes also direct polyadenylated 3′-end formation in the context of an mRNA 3′ untranslated region. A selection for cis-acting terminator readthrough mutations identified conserved features of these elements, some of which are similar to cleavage and polyadenylation signals. A selection for trans-acting mutations that induce readthrough of both a snoRNA and an mRNA terminator yielded mutations in the Rpb3 and Rpb11 subunits of Pol II that define a remarkably discrete surface on the trailing end of the enzyme. Our results suggest that, at least in budding yeast, protein-coding and noncoding Pol II-transcribed genes use similar mechanisms to direct termination and that the termination signal is transduced through the Rpb3/Rpb11 heterodimer.


1998 ◽  
Vol 18 (3) ◽  
pp. 1467-1476 ◽  
Author(s):  
John J. Long ◽  
Anne Leresche ◽  
Richard W. Kriwacki ◽  
Joel M. Gottesfeld

ABSTRACT Nuclear transcription is repressed when eukaryotic cells enter mitosis. Mitotic repression of transcription of various cellular and viral gene promoters by RNA polymerase II can be reproduced in vitro either with extracts prepared from cells arrested at mitosis with the microtubule polymerization inhibitor nocodazole or with nuclear extracts prepared from asynchronous cells and the mitotic protein kinase cdc2/cyclin B. Purified cdc2/cyclin B kinase is also sufficient to inhibit transcription in reconstituted transcription reactions with biochemically purified and recombinant basal transcription factors and RNA polymerase II. The cyclin-dependent kinase inhibitor p21 Waf1/Cip1/Sdi1 can reverse the effect of cdc2/cyclin B kinase, indicating that repression of transcription is due to protein phosphorylation. Transcription rescue and inhibition experiments with each of the basal factors and the polymerase suggest that multiple components of the transcription machinery are inactivated by cdc2/cyclin B kinase. For an activated promoter, targets of repression are TFIID and TFIIH, while for a basal promoter, TFIIH is the major target for mitotic inactivation of transcription. Protein labeling experiments indicate that the p62 and p36 subunits of TFIIH are in vitro substrates for mitotic phosphorylation. Using the carboxy-terminal domain of the large subunit of RNA polymerase II as a test substrate for phosphorylation, the TFIIH-associated kinase, cdk7/cyclin H, is inhibited concomitant with inhibition of transcription activity. Our results suggest that there exist multiple phosphorylation targets for the global shutdown of transcription at mitosis.


2007 ◽  
Vol 178 (7) ◽  
pp. 1133-1143 ◽  
Author(s):  
Rona Lotan ◽  
Vicky Goler-Baron ◽  
Lea Duek ◽  
Gal Haimovich ◽  
Mordechai Choder

The steady-state level of mRNAs is determined by the balance between their synthesis by RNA polymerase II (Pol II) and their decay. In the cytoplasm, mRNAs are degraded by two major pathways; one requires decapping and 5′ to 3′ exonuclease activity and the other involves 3′ to 5′ degradation. Rpb7p is a Pol II subunit that shuttles between the nucleus and the cytoplasm. Here, we show that Rpb7p is involved in the two mRNA decay pathways and possibly couples them. Rpb7p stimulates the deadenylation stage required for execution of both pathways. Additionally, Rpb7p is both an active component of the P bodies, where decapping and 5′ to 3′ degradation occur, and is capable of affecting the P bodies function. Moreover, Rpb7p interacts with the decapping regulator Pat1p in a manner important for the mRNA decay machinery. Rpb7p is also involved in the second pathway, as it stimulates 3′ to 5′ degradation. Our genetic analyses suggest that Rpb7p plays two distinct roles in mRNA decay, which can both be uncoupled from Rpb7p's role in transcription. Thus, Rpb7p plays pivotal roles in determining mRNA levels.


Sign in / Sign up

Export Citation Format

Share Document