scholarly journals The Flagella of an Atypical Enteropathogenic Escherichia coli Strain Are Required for Efficient Interaction with and Stimulation of Interleukin-8 Production by Enterocytes In Vitro

2009 ◽  
Vol 77 (10) ◽  
pp. 4406-4413 ◽  
Author(s):  
Suely C. F. Sampaio ◽  
Tânia A. T. Gomes ◽  
Christophe Pichon ◽  
Laurence du Merle ◽  
Stéphanie Guadagnini ◽  
...  

ABSTRACT The ability of some typical enteropathogenic Escherichia coli (EPEC) strains to adhere to, invade, and increase interleukin-8 (IL-8) production in intestinal epithelial cells in vitro has been demonstrated. However, few studies regarding these aspects have been performed with atypical EPEC (aEPEC) strains, which are emerging enteropathogens in Brazil. In this study, we evaluated a selected aEPEC strain (1711-4) of serotype O51:H40, the most prevalent aEPEC serotype in Brazil, in regard to its ability to adhere to and invade Caco-2 and T84 cells and to elicit IL-8 production in Caco-2 cells. The role of flagella in aEPEC 1711-4 adhesion, invasion, and IL-8 production was investigated by performing the same experiments with an isogenic aEPEC mutant unable to produce flagellin (FliC), the flagellum protein subunit. We demonstrated that this mutant (fliC mutant) had a marked decrease in the ability to adhere to T84 cells and invade both T84 and Caco-2 cells in gentamicin protection assays and by transmission electron microscopy. In addition, the aEPEC 1711-4 fliC mutant had a reduced ability to stimulate IL-8 production by Caco-2 cells in early (3-h) but not in late (24-h) infections. Our findings demonstrate that flagella of aEPEC 1711-4 are required for efficient adhesion, invasion, and early but not late IL-8 production in intestinal epithelial cells in vitro.

2016 ◽  
Vol 79 (11) ◽  
pp. 1965-1970 ◽  
Author(s):  
SANGEETHA ANANDA BASKARAN ◽  
ANUP KOLLANOOR-JOHNY ◽  
MEERA SURENDRAN NAIR ◽  
KUMAR VENKITANARAYANAN

ABSTRACTEscherichia coli O157:H7 is a major foodborne pathogen that can cause serious human illness characterized by hemorrhagic diarrhea and kidney failure. The pathology of enterohemorrhagic E. coli O157:H7 (EHEC) infection is primarily mediated by verotoxins, which bind to the globotriaosylceramide receptor on host cells. Antibiotics are contraindicated for treating EHEC infection because they lead to increased verotoxin release, thereby increasing the risk of renal failure and death in patients. Thus, alternative strategies are needed for controlling EHEC infections in humans. This study investigated the effect of subinhibitory concentrations of five plant-derived antimicrobial agents (PDAs) that are generally considered as safe, i.e., trans-cinnamaldehyde, eugenol, carvacrol, thymol, and β-resorcylic acid, on EHEC motility, adhesion to human intestinal epithelial cells, verotoxin production, and virulence gene expression. All tested PDAs reduced EHEC motility and attachment to human intestinal epithelial cells (P < 0.05) and decreased verotoxin synthesis by EHEC. The reverse transcription real-time PCR data revealed that PDAs decreased the expression of critical virulence genes in EHEC (P < 0.05). The results collectively suggest that these PDAs could be used to reduce EHEC virulence, but follow-up studies in animal models are necessary to validate these findings.


2007 ◽  
Vol 189 (13) ◽  
pp. 4860-4871 ◽  
Author(s):  
Marie-Agnès Bringer ◽  
Nathalie Rolhion ◽  
Anne-Lise Glasser ◽  
Arlette Darfeuille-Michaud

ABSTRACT Adherent-invasive Escherichia coli (AIEC) isolated from Crohn's disease patients is able to adhere to and invade intestinal epithelial cells and to replicate in mature phagolysosomes within macrophages. Here, we show that the dsbA gene, encoding a periplasmic oxidoreductase, was required for AIEC strain LF82 to adhere to intestinal epithelial cells and to survive within macrophages. The LF82-ΔdsbA mutant did not express flagella and, probably as a consequence of this, did not express type 1 pili. The role of DsbA in adhesion is restricted to the loss of flagella and type 1 pili, as forced contact between bacteria and cells and induced expression of type 1 pili restored the wild-type phenotype. In contrast, the dsbA gene is essential for AIEC LF82 bacteria to survive within macrophages, irrespective of the loss of flagella and type 1 pilus expression, and the survival ability of LF82-ΔdsbA was as low as that of the nonpathogenic E. coli K-12, which was efficiently killed by macrophages. We also provide evidence that the dsbA gene is needed for LF82 bacteria to grow and survive in an acidic and nutrient-poor medium that partly mimics the harsh environment of the phagocytic vacuole. In addition, under such stress conditions dsbA transcription is highly up-regulated. Finally, the CpxRA signaling pathway does not play a role in regulation of dsbA expression in AIEC LF82 bacteria under conditions similar to those of mature phagolysosomes.


2008 ◽  
Vol 76 (10) ◽  
pp. 4498-4508 ◽  
Author(s):  
Jie Zheng ◽  
Jianghong Meng ◽  
Shaohua Zhao ◽  
Ruby Singh ◽  
Wenxia Song

ABSTRACT Campylobacter jejuni and Campylobacter coli colonize and infect the intestinal epithelium and cause acute inflammatory diarrhea. The intestinal epithelium serves as a physical barrier to, and a sensor of, bacterial infection by secreting proinflammatory cytokines. This study examined the mechanisms for Campylobacter-induced secretion of the proinflammatory chemokine interleukin-8 (IL-8) by using polarized T84 human colonic epithelial cells as a model. C. jejuni increased the secretion of both IL-8 and tumor necrosis factor alpha (TNF-α) in polarized epithelial cells. However, the increase in IL-8 secretion was independent of Campylobacter-stimulated TNF-α secretion. Polarized T84 cells secreted IL-8 predominantly to the basolateral medium independently of the inoculation direction. While there was a significant correlation between the levels of IL-8 secretion and Campylobacter invasion, all 11 strains tested increased IL-8 secretion by polarized T84 cells despite their differences in adherence, invasion, and transcytosis efficiencies. Cell-free supernatants of Campylobacter-T84-cell culture increased IL-8 secretion to levels similar to those induced by live bacterial inoculation. The ability of the supernatant to induce IL-8 secretion was reduced by flagellum and cytolethal distending toxin (CDT) gene mutants, treatment of the supernatant with protease K or heat, or treatment of T84 cells with the Toll-like receptor (TLR) inhibitor MyD88 inhibitory peptide or chloroquine. NF-κB inhibitors or cdtB mutation plus MyD88 inhibitor, but not flaA cdtB double mutations, abolished the ability of the supernatant to induce IL-8 secretion. Taken together, our results demonstrate that Campylobacter-induced IL-8 secretion requires functional flagella and CDT and depends on the activation of NF-κB through TLR signaling and CDT in human intestinal epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document