scholarly journals Differential Regulation of Mas-Related G Protein-Coupled Receptor X2-Mediated Mast Cell Degranulation by Antimicrobial Host Defense Peptides and Porphyromonas gingivalis Lipopolysaccharide

2017 ◽  
Vol 85 (10) ◽  
Author(s):  
Kshitij Gupta ◽  
Chizobam Idahosa ◽  
Saptarshi Roy ◽  
Donguk Lee ◽  
Hariharan Subramanian ◽  
...  

ABSTRACT Porphyromonas gingivalis is a keystone pathogen that contributes to periodontal pathogenesis by disrupting host-microbe homeostasis and promoting dysbiosis. The virulence of P. gingivalis likely reflects an alteration in the lipid A composition of its lipopolysaccharide (LPS) from the penta-acylated (PgLPS1690) to the tetra-acylated (PgLPS1435/1449) form. Mast cells play an important role in periodontitis, but the mechanisms of their activation and regulation remain unknown. The expression of epithelium- and neutrophil-derived host defense peptides (HDPs) (LL-37 and human β-defensin-3), which activate mast cells via Mas-related G protein-coupled receptor X2 (MRGPRX2), is increased in periodontitis. We found that MRGPRX2-expressing mast cells are present in normal gingiva and that their numbers are elevated in patients with chronic periodontitis. Furthermore, HDPs stimulated degranulation in a human mast cell line (LAD2) and in RBL-2H3 cells stably expressing MRGPRX2 (RBL-MRGPRX2). PgLPS1690 caused substantial inhibition of HDP-induced mast cell degranulation, but PgLPS1435/1449 had no effect. A fluorescently labeled HDP (FAM-LL-37) bound to RBL-MRGPRX2 cells, and PgLPS1690 inhibited this binding, but PgLPS1435/1449 had no effect. These findings suggest that low-level inflammation induced by HDP/MRGPRX2-mediated mast cell degranulation contributes to gingival homeostasis but that sustained inflammation due to elevated levels of both HDPs and MRGPRX2-expressing mast cells promotes periodontal disease. Furthermore, differential regulation of HDP-induced mast cell degranulation by PgLPS1690 and PgLPS1435/1449 may contribute to the modulation of disease progression.

2021 ◽  
Vol 22 (9) ◽  
pp. 4421
Author(s):  
Paola Leonor Quan ◽  
Marina Sabaté-Brescó ◽  
Yanru Guo ◽  
Margarita Martín ◽  
Gabriel Gastaminza

Recent research on mast cell biology has turned its focus on MRGPRX2, a new member of the Mas-related G protein-coupled subfamily of receptors (Mrgprs), originally described in nociceptive neurons of the dorsal root ganglia. MRGPRX2, a member of this group, is present not only in neurons but also in mast cells (MCs), specifically, and potentially in other cells of the immune system, such as basophils and eosinophils. As emerging new functions for this receptor are studied, a variety of both natural and pharmacologic ligands are being uncovered, linked to the ability to induce receptor-mediated MC activation and degranulation. The diversity of these ligands, characterized in their human, mice, or rat homologues, seems to match that of the receptor’s interactions. Natural ligands include host defense peptides, basic molecules, and key neuropeptides such as substance P and vasointestinal peptide (known for their role in the transmission of pain and itch) as well as eosinophil granule-derived proteins. Exogenous ligands include MC secretagogues such as compound 48/80 and mastoparan, a component of bee wasp venom, and several peptidergic drugs, among which are members of the quinolone family, neuromuscular blocking agents, morphine, and vancomycin. These discoveries shed light on its capacity as a multifaceted participant in naturally occurring responses within immunity and neural stimulus perception, as in responses at the center of immune pathology. In host defense, the mice Mrgprb2 has been proven to aid mast cells in the detection of peptidic molecules from bacteria and in the release of peptides with antimicrobial activities and other immune mediators. There are several potential actions described for it in tissue homeostasis and repair. In the realm of pathologic response, there is evidence to suggest that this receptor is also involved in chronic inflammation. Furthermore, MRGPRX2 has been linked to the pathophysiology of non-IgE-mediated immediate hypersensitivity drug reactions. Different studies have shown its possible role in other allergic diseases as well, such as asthma, atopic dermatitis, contact dermatitis, and chronic spontaneous urticaria. In this review, we sought to cover its function in physiologic processes and responses, as well as in allergic and nonallergic immune disease.


1998 ◽  
Vol 112 (5) ◽  
pp. 577-591 ◽  
Author(s):  
Dorothea Lorenz ◽  
Burkhard Wiesner ◽  
Josef Zipper ◽  
Anett Winkler ◽  
Eberhard Krause ◽  
...  

Substance P and other polycationic peptides are thought to stimulate mast cell degranulation via direct activation of G proteins. We investigated the ability of extracellularly applied substance P to translocate into mast cells and the ability of intracellularly applied substance P to stimulate degranulation. In addition, we studied by reverse transcription–-PCR whether substance P-specific receptors are present in the mast cell membrane. To study translocation, a biologically active and enzymatically stable fluorescent analogue of substance P was synthesized. A rapid, substance P receptor- and energy-independent uptake of this peptide into pertussis toxin-treated and -untreated mast cells was demonstrated using confocal laser scanning microscopy. The peptide was shown to localize preferentially on or inside the mast cell granules using electron microscopic autoradiography with 125I-labeled all-D substance P and 3H-labeled substance P. Cell membrane capacitance measurements using the patch-clamp technique demonstrated that intracellularly applied substance P induced calcium transients and activated mast cell exocytosis with a time delay that depended on peptide concentration (delay of 100–500 s at concentrations of substance P from 50 to 5 μM). Degranulation in response to intracellularly applied substance P was inhibited by GDPβS and pertussis toxin, suggesting that substance P acts via G protein activation. These results support the recently proposed model of a receptor-independent mechanism of peptide-induced mast cell degranulation, which assumes a direct interaction of peptides with G protein α subunits subsequent to their translocation across the plasma membrane.


2019 ◽  
Vol 131 (1) ◽  
pp. 132-147 ◽  
Author(s):  
Tony L. Yaksh ◽  
Kelly A. Eddinger ◽  
Shinichi Kokubu ◽  
Zhenping Wang ◽  
Anna DiNardo ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background As the meningeally derived, fibroblast-rich, mass-produced by intrathecal morphine infusion is not produced by all opiates, but reduced by mast cell stabilizers, the authors hypothesized a role for meningeal mast cell/fibroblast activation. Using the guinea pig, the authors asked: (1) Are intrathecal morphine masses blocked by opiate antagonism?; (2) Do opioid agonists not producing mast cell degranulation or fibroblast activation produce masses?; and (3) Do masses covary with Mas-related G protein-coupled receptor signaling thought to mediate mast cell degranulation? Methods In adult male guinea pigs (N = 66), lumbar intrathecal catheters connected to osmotic minipumps (14 days; 0.5 µl/h) were placed to deliver saline or equianalgesic concentrations of morphine sulfate (33 nmol/h), 2’,6’-dimethyl tyrosine-(Tyr-D-Arg-Phe-Lys-NH2) (abbreviated as DMT-DALDA; 10 pmol/h; μ agonist) or PZM21 (27 nmol/h; biased μ agonist). A second pump delivered subcutaneous naltrexone (25 µg/h) in some animals. After 14 to 16 days, animals were anesthetized and perfusion-fixed. Drug effects on degranulation of human cultured mast cells, mouse embryonic fibroblast activation/migration/collagen formation, and Mas-related G protein-coupled receptor activation (PRESTO-Tango assays) were determined. Results Intrathecal infusion of morphine, DMT-DALDA or PZM21, but not saline, comparably increased thermal thresholds for 7 days. Spinal masses proximal to catheter tip, composed of fibroblast/collagen type I (median: interquartile range, 0 to 4 scale), were produced by morphine (2.3: 2.0 to 3.5) and morphine plus naltrexone (2.5: 1.4 to 3.1), but not vehicle (1.2: 1.1 to 1.5), DMT-DALDA (1.0: 0.6 to 1.3), or PZM21 (0.5: 0.4 to 0.8). Morphine in a naloxone-insensitive fashion, but not PZM21 or DMT-DALDA, resulted in mast cell degranulation and fibroblast proliferation/collagen formation. Morphine-induced fibroblast proliferation, as mast cell degranulation, is blocked by cromolyn. Mas-related G protein-coupled receptor activation was produced by morphine and TAN67 (∂-opioid agonist), but not by PZM21, TRV130 (mu biased ligand), or DMT-DALDA. Conclusions Opiates that activate Mas-related G protein-coupled receptor will degranulate mast cells, activate fibroblasts, and result in intrathecal mass formation. Results suggest a mechanistically rational path forward to safer intrathecal opioid therapeutics.


1996 ◽  
Vol 71 ◽  
pp. 217
Author(s):  
Tohru Ogasawara ◽  
Makoto Murakami ◽  
Tamiko Suzuki-Nishimura ◽  
Masaatsu K. Uchida ◽  
Ichiro Kudo

2020 ◽  
Vol 7 ◽  
Author(s):  
Xiaofeng Wang ◽  
Ramses Ilarraza ◽  
Brian P. Tancowny ◽  
Syed Benazir Alam ◽  
Marianna Kulka

n-3 polyunsaturated fatty acids (PUFA) influences a variety of disease conditions, such as hypertension, heart disease, diabetes, cancer and allergic diseases, by modulating membrane constitution, inhibiting production of proinflammatory eicosanoids and cytokines, and binding to cell surface and nuclear receptors. We have previously shown that n-3 PUFA inhibit mast cell functions by disrupting high affinity IgE receptor (FcεRI) lipid raft partitioning and subsequent suppression of FcεRI signaling in mouse bone marrow-derived mast cells. However, it is still largely unknown how n-3 PUFA modulate human mast cell function, which could be attributed to multiple mechanisms. Using a human mast cell line (LAD2), we have shown similar modulating effects of n-3 PUFA on FcεRI lipid raft shuttling, FcεRI signaling, and mediator release after cell activation through FcεRI. We have further shown that these effects are at least partially associated with ligation of G protein-coupled receptor 120 expressed on LAD2 cells. This observation has advanced our mechanistic knowledge of n-3 PUFA's effect on mast cells and demonstrated the interplay between n-3 PUFA, lipid rafts, FcεRI, and G protein-coupled receptor 120. Future research in this direction may present new targets for nutritional intervention and therapeutic agents.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maud A. W. Hermans ◽  
Astrid C. van Stigt ◽  
Sanne van de Meerendonk ◽  
Benjamin Schrijver ◽  
Paul L. A. van Daele ◽  
...  

The Mas-related G-protein-coupled receptor X2 (MRGPRX2) is prominently expressed by mast cells and induces degranulation upon binding by different ligands. Its activation has been linked to various mast cell-related diseases, such as chronic spontaneous urticaria, atopic dermatitis and asthma. Therefore, inhibition of MRGPRX2 activity represents a therapeutic target for these conditions. However, the exact pathophysiology of this receptor is still unknown. In vitro research with mast cells is often hampered by the technical limitations of available cell lines. The human mast cell types LAD2 and HuMC (human mast cells cultured from CD34+ progenitor cells) most closely resemble mature human mast cells, yet have a very slow growth rate. A fast proliferating alternative is the human mast cell line HMC1, but they are considered unsuitable for degranulation assays due to their immature phenotype. Moreover, the expression and functionality of MRGPRX2 on HMC1 is controversial. Here, we describe the MRGPRX2 expression and functionality in HMC1 cells, and compare these with LAD2 and HuMC. We also propose a model to render HMC1 suitable for degranulation assays by pre-incubating them with latrunculin-B (Lat-B). Expression of MRGPRX2 by HMC1 was proven by RQ-PCR and flowcytometry, although at lower levels compared with LAD2 and HuMC. Pre-incubation of HMC1 cells with Lat-B significantly increased the overall degranulation capacity, without significantly changing their MRGPRX2 expression, phenotype or morphology. The MRGPRX2 specific compound 48/80 (C48/80) effectively induced degranulation of HMC1 as measured by CD63 membrane expression and β-hexosaminidase release, albeit in lower levels than for LAD2 or HuMC. HMC1, LAD2 and HuMC each had different degranulation kinetics upon stimulation with C48/80. Incubation with the MRGPRX2 specific inhibitor QWF inhibited C48/80-induced degranulation, confirming the functionality of MRGPRX2 on HMC1. In conclusion, HMC1 cells have lower levels of MRGPRX2 expression than LAD2 or HuMC, but are attractive for in vitro research because of their high growth rate and stable phenotype. HMC1 can be used to study MRGPRX2-mediated degranulation after pre-incubation with Lat-B, which provides the opportunity to explore MPRGRX2 biology in mast cells in a feasible way.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aetas Amponnawarat ◽  
Chalatip Chompunud Na Ayudhya ◽  
Hydar Ali

Pseudomonas aeruginosa is a frequent cause of hospital-acquired wound infection and is difficult to treat because it forms biofilms and displays antibiotic resistance. Previous studies in mice demonstrated that mast cells (MCs) not only contribute to P. aeruginosa eradication but also promote wound healing via an unknown mechanism. We recently reported that host defense peptides (HDPs) induce human MC degranulation via Mas-related G protein-coupled receptor-X2 (MRGPRX2). Small molecule HDP mimetics have distinct advantages over HDPs because they are inexpensive to synthesize and display high stability, bioavailability, and low toxicity. Murepavadin is a lipidated HDP mimetic, (also known as POL7080), which displays antibacterial activity against a broad panel of multi-drug-resistant P. aeruginosa. We found that murepavadin induces Ca2+ mobilization, degranulation, chemokine IL-8 and CCL3 production in a human MC line (LAD2 cells) endogenously expressing MRGPRX2. Murepavadin also caused degranulation in RBL-2H3 cells expressing MRGPRX2 but this response was significantly reduced in cells expressing missense variants within the receptor’s ligand binding (G165E) or G protein coupling (V282M) domains. Compound 48/80 induced β-arrestin recruitment and promoted receptor internalization, which resulted in substantial decrease in the subsequent responsiveness to the MRGPRX2 agonist. By contrast, murepavadin did not cause β-arrestin-mediated MRGPRX2 regulation. Murepavadin induced degranulation in mouse peritoneal MCs via MrgprB2 (ortholog of human MRGPRX2) and caused increased vascular permeability in wild-type mice but not in MrgprB2-/- mice. The data presented herein demonstrate that murepavadin activates human MCs via MRGPRX2 and murine MCs via MrgprB2 and that MRGPRX2 is resistant to β-arrestin-mediated receptor regulation. Thus, besides its direct activity against P. aeruginosa, murepavadin may contribute to bacterial clearance and promote wound healing by harnessing MC’s immunomodulatory property via the activation of MRGPRX2.


Sign in / Sign up

Export Citation Format

Share Document