host defense peptide
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 62)

H-INDEX

32
(FIVE YEARS 6)

2021 ◽  
Vol 12 ◽  
Author(s):  
Qing Yang ◽  
Li-An Fong ◽  
Wentao Lyu ◽  
Lakshmi T. Sunkara ◽  
Kan Xiao ◽  
...  

Antimicrobial resistance is a major concern to public health demanding effective alternative strategies to disease control and prevention. Modulation of endogenous host defense peptide (HDP) synthesis has emerged as a promising antibiotic alternative approach. This study investigated a potential synergy between sugars and butyrate in inducing HDP gene expression in chickens. Our results revealed that sugars differentially regulated HDP expression in both gene- and sugar-specific manners in chicken HD11 macrophage cells. Among eight mono- and disaccharides tested, all were potent inducers of avian β-defensin 9 (AvBD9) gene (p<0.05), but only galactose, trehalose, and lactose obviously upregulated cathelicidin-B1 (CATHB1) gene expression. The expression of AvBD14 gene, on the other hand, was minimally influenced by sugars. Moreover, all sugars exhibited a strong synergy with butyrate in enhancing AvBD9 expression, while only galactose, trehalose, and lactose were synergistic with butyrate in CATHB1 induction. No synergy in AvBD14 induction was observed between sugars and butyrate. Although lactose augmented the expression of nearly all HDP genes, its synergy with butyrate was only seen with several, but not all, HDP genes. Mucin-2 gene was also synergistically induced by a combination of lactose and butyrate. Furthermore, lactose synergized with butyrate to induce AvBD9 expression in chicken jejunal explants (p<0.05). Mechanistically, hyper-acetylation of histones was observed in response to both butyrate and lactose, relative to individual compounds. Mitogen-activated protein kinase, NF-κB, and cyclic adenosine monophosphate signaling pathways were also found to be involved in butyrate- and lactose-mediated synergy in AvBD9 induction. Collectively, a combination of butyrate and a sugar with both HDP-inducing and barrier protective activities holds the promise to be developed as an alternative to antibiotics for disease control and prevention.


2021 ◽  
Vol 18 ◽  
Author(s):  
Donald F. Weaver

Background: As new biomolecular targets for Alzheimer’s disease (AD) emerge, there is a tendency to regard these as mutually exclusive and in competition, culminating in declarations that since the “amyloid hypothesis is dead” it needs to be replaced by completely different theories. However, given the well-described role of misfolding peptides, particularly β-amyloid (Aβ), in the pathogenesis of AD, the need for a broad-based conceptualization of AD, coalescing different theories into a single harmonized explanation emerges as a viable alternative. Incorporating protein aggregation mechanisms of AD into a more widely-encompassing immunopathic model of AD could accomplish such a goal – a goal which could be achieved by repositioning the role of Aβ as an immunopeptide. Conclusions: This review presents the concept that Aβ is an immunopeptide and that AD is an autoimmune disease in which Aβ is a key molecular player. Being a peptide with the capacity to alter immune function, Aβ is an immunopeptide; having both antimicrobial and immunomodulatory activities, Aβ is a host defense peptide; having most of the defining properties of cytokines, Aβ satisfies the broad definition of cytokine – the prototypic immunopeptide subtype. In addition to these immunoactivities, Aβ is also directly and independently cytotoxic to neurons by both necrotic and apoptotic mechanisms. Therefore, following brain exposure to immune-instigating stimuli, the innate immune system is activated, leading to the release of Aβ as an immunopeptide (functioning as a host defense peptide or cytokine), which subsequently inflicts a misdirected attack upon the host neurons – an autoimmune event.


2021 ◽  
Vol 14 (12) ◽  
pp. 1245
Author(s):  
Yingxia Zhang ◽  
Jayaram Lakshmaiah Narayana ◽  
Qianhui Wu ◽  
Xiangli Dang ◽  
Guangshun Wang

The deployment of the innate immune system in humans is essential to protect us from infection. Human cathelicidin LL-37 is a linear host defense peptide with both antimicrobial and immune modulatory properties. Despite years of studies of numerous peptides, SK-24, corresponding to the long hydrophobic domain (residues 9–32) in the anionic lipid-bound NMR structure of LL-37, has not been investigated. This study reports the structure and activity of SK-24. Interestingly, SK-24 is entirely helical (~100%) in phosphate buffer (PBS), more than LL-37 (84%), GI-20 (75%), and GF-17 (33%), while RI-10 and 17BIPHE2 are essentially randomly coiled (helix%: 7%–10%). These results imply an important role for the additional N-terminal amino acids (likely E16) of SK-24 in stabilizing the helical conformation in PBS. It is proposed herein that SK-24 contains the minimal sequence for effective oligomerization of LL-37. Superior to LL-37 and RI-10, SK-24 shows an antimicrobial activity spectrum comparable to the major antimicrobial peptides GF-17 and GI-20 by targeting bacterial membranes and forming a helical conformation. Like the engineered peptide 17BIPHE2, SK-24 has a stronger antibiofilm activity than LL-37, GI-20, and GF-17. Nevertheless, SK-24 is least hemolytic at 200 µM compared with LL-37 and its other peptides investigated herein. Combined, these results enabled us to appreciate the elegance of the long amphipathic helix SK-24 nature deploys within LL-37 for human antimicrobial defense. SK-24 may be a useful template of therapeutic potential.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shyla Gopalakrishnan ◽  
Soumya Krishnan Uma ◽  
Gayathri Mohan ◽  
Amrutha Mohan ◽  
Geetha Shanmugam ◽  
...  

While the immunomodulatory pathways initiated in immune cells contribute to therapeutic response, their activation in cancer cells play a role in cancer progression. Also, many of the aberrantly expressed immunomodulators on cancer cells are considered as therapeutic targets. Here, we introduce host defense peptide (HDP), a known immuomodulator, as a therapeutic agent to target them. The cationic host defense peptides (HDPs), an integral part of the innate immune system, possess membranolytic activity, which imparts antimicrobial and antitumor efficacy to it. They act as immunomodulators by activating the immune cells. Though their antimicrobial function has been recently reassigned to immunoregulation, their antitumor activity is still attributed to its membranolytic activity. This membrane pore formation ability, which is proportional to the concentration of the peptide, also leads to side effects like hemolysis, limiting their therapeutic application. So, despite the identification of a variety of anticancer HDPs, their clinical utility is limited. Though HDPs are shown to exert the immunomodulatory activity through specific membrane targets on immune cells, their targets on cancer cells are unknown. We show that SSTP1, a novel HDP identified by shotgun cloning, binds to the active IL6/IL6Rα/gp130 complex on cancer cells, rearranging the active site residues. In contrast to the IL6 blockers inhibiting JAK/STAT activity, SSTP1 shifts the proliferative IL6/JAK/STAT signaling to the apoptotic IL6/JNK/AP1 pathway. In IL6Rα-overexpressing cancer cells, SSTP1 induces apoptosis at low concentration through JNK pathway, without causing significant membrane disruption. We highlight the importance of immunomodulatory pathways in cancer apoptosis, apart from its established role in immune cell regulation and cancer cell proliferation. Our study suggests that identification of the membrane targets for the promising anticancer HDPs might lead to the identification of new drugs for targeted therapy.


2021 ◽  
Vol 22 (22) ◽  
pp. 12401
Author(s):  
Tadsanee Awang ◽  
Phoom Chairatana ◽  
Ranjit Vijayan ◽  
Prapasiri Pongprayoon

Human α-defensin 5 (HD5) is a host-defense peptide exhibiting broad-spectrum antimicrobial activity. The lipopolysaccharide (LPS) layer on the Gram-negative bacterial membrane acts as a barrier to HD5 insertion. Therefore, the pore formation and binding mechanism remain unclear. Here, the binding mechanisms at five positions along the bacterial membrane axis were investigated using Molecular Dynamics. (MD) simulations. We found that HD5 initially placed at positions 1 to 3 moved up to the surface, while HD5 positioned at 4 and 5 remained within the membrane interacting with the middle and inner leaflet of the membrane, respectively. The arginines were key components for tighter binding with 3-deoxy-d-manno-octulosonic acid (KDO), phosphates of the outer and inner leaflets. KDO appeared to retard the HD5 penetration.


2021 ◽  
Vol 339 ◽  
pp. 220-231
Author(s):  
Matthew Drayton ◽  
Morgan A. Alford ◽  
Daniel Pletzer ◽  
Evan F. Haney ◽  
Yoan Machado ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1820
Author(s):  
Hashem Etayash ◽  
Robert E. W. Hancock

Amphiphilic antimicrobial polymers have attracted considerable interest as structural mimics of host defense peptides (HDPs) that provide a broad spectrum of activity and do not induce bacterial-drug resistance. Likewise, surface engineered polymeric-brush-tethered HDP is considered a promising coating strategy that prevents infections and endows implantable materials and medical devices with antifouling and antibacterial properties. While each strategy takes a different approach, both aim to circumvent limitations of HDPs, enhance physicochemical properties, therapeutic performance, and enable solutions to unmet therapeutic needs. In this review, we discuss the recent advances in each approach, spotlight the fundamental principles, describe current developments with examples, discuss benefits and limitations, and highlight potential success. The review intends to summarize our knowledge in this research area and stimulate further work on antimicrobial polymers and functionalized polymeric biomaterials as strategies to fight infectious diseases.


Author(s):  
Nagendra N. Mishra ◽  
Cassandra Lew ◽  
Wessam Abdelhady ◽  
Christian K. Lapitan ◽  
Richard A. Proctor ◽  
...  

Increased usage of daptomycin (DAP) for methicillin-resistant Staphylococcus aureus (MRSA) infections has led to emergence of DAP-resistant (DAP-R) strains, resulting in treatment failures. DAP-fosfomycin (Fosfo) combinations are synergistically active against MRSA, although the mechanism(s) of this interaction are not fully understood. The current study explores four unique, but likely interrelated activities of DAP-Fosfo combinations: i ) synergistic killing; ii ) prevention of evolution of DAP-R; iii ) resensitization of already DAP-R subpopulations to a DAP-susceptible (DAP-S) phenotype; and iv ) perturbations of specific cell envelope phenotypes known to correlate with DAP-R in MRSA. Using an isogenic DAP-S (CB1483) / DAP-R (CB185) clinical MRSA strain-pair, we demonstrated that DAP + Fosfo combinations: i ) enhanced killing of both strains in vitro and ex vivo ; ii ) increased target tissue clearances of the DAP-R strain in an in vivo model of experimental infective endocarditis (IE); iii ) prevented emergence of DAP-R in the DAP-S parental strain both in vitro and ex vivo ; and iv ) resensitized the DAP-R strain to a DAP-S phenotype ex vivo . Phenotypically, following exposure to sub-MIC Fosfo, the DAP-S/ DAP-R strain-pair exhibited distinct modifications in: i ) net positive surface charge (p<0.0001); ii ) quantity (p<0.0001) and localization of cell membrane cardiolipin (CL); iii ) DAP surface binding; and iv ) membrane fluidity (p <0.0001). Furthermore, pre-conditioning to this strain-pair to DAP +/- Fosfo sensitized these organisms to killing by the human host defense peptide, LL37. These data underscore the notion that DAP-Fosfo combinations can impact MRSA clearances within multiple microenvironments, likely based on specific phenotypic adaptations.


Sign in / Sign up

Export Citation Format

Share Document