Plasmacytoid dendritic cells-derived IFN-α is involved in Helicobacter pylori infection-induced differentiation of Schlafen 4–expressing myeloid-derived suppressor cells

2021 ◽  
Author(s):  
Xiaodan Xiang ◽  
Yaping Wu ◽  
Hongwei Li ◽  
Cun Li ◽  
Lu Yan ◽  
...  

During chronic infection with Helicobacter pylori , Schlafen 4-expressing myeloid-derived suppressor cells (SLFN4 + MDSCs) create a microenvironment favoring intestinal metaplasia and neoplastic transformation. SLFN4 can be induced by IFN-α, which is mainly secreted from plasmacytoid dendritic cells (pDCs). This study tested the hypothesis that Helicobacter pylori infection promotes SLFN4 + MDSC differentiation by inducing pDCs to secrete IFN-α. C57BL/6 mice were gavaged with H. pylori and infection lasted 2, 4, or 6 months. The mouse pDCs were isolated from the bone marrow from wild type C57BL/6J mice. The results showed that H. pylori infection increased the number of SLFN4 + MDSCs by inducing IFN-α expression in mice. Further mechanistic experiments unraveled that IFN-α induced SLFN4 transcription by binding to the SLFN4 promoter. Furthermore, H. pylori infection stimulated pDCs to secrete IFN-α by activating the TLR9-MyD88-IRF7 pathway. Collectively, Helicobacter pylori infection promotes SLFN4 + MDSC differentiation by inducing secretion of IFN-α from pDCs.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi92-vi93
Author(s):  
Gregory Takacs ◽  
Christian Kreiger ◽  
Defang Luo ◽  
Joseph Flores-Toro ◽  
Loic Deleyrolle ◽  
...  

Abstract INTRODUCTION Mounting evidence suggests infiltrating immune-suppressive cells contribute to immune checkpoint inhibitor resistance and poor survival in Glioblastoma (GBM) patients. We have previously shown glioma-associated monocytic-myeloid derived suppressor cells (M-MDSCs) express chemokine receptors CCR2 and CX3CR1. Genetic and pharmacologic targeting of CCR2 promoted sequestration of M-MDSCs in the bone marrow and, in combination with PD-1 blockade, slowed progression of KR158 and 005GSC murine gliomas. This combination treatment also enhanced infiltration of IFNg-producing T cells that were less exhausted. Although CCR2+/CX3CR1+ cells display surface markers indicative of bone marrow-derived M-MDSCs, additional studies are needed to formally establish the source of these cells and to determine if they exhibit an immune-suppressive phenotype as well as migrate to the CCR2 ligands, CCL2 and/or CCL7. OBJECTIVE Evaluate the source, migration, and immune suppressive function of CCR2+/CX3CR1+ myeloid cells from glioma bearing mice. METHODS To identify the source of CCR2+/CX3CR1+ myeloid cells, chimeric wild type mice harboring bone marrow cells from transgenic CCR2WT/RFP/CX3CR1WT/GFP mice were generated. CCR2+/CX3CR1+ cells were enriched from bone marrow obtained from either wild-type or CCR2WT/RFP/CX3CR1WT/GFP naïve and glioma-bearing mice in order to evaluate their immune suppressive phenotype and ability to migrate to CCL2 and CCL7. RESULTS CCR2+/CX3CR1+ cells are present in glioma isolates from chimeric mice, indicative of a bone marrow-derived cell population, and are detectable within the tumor microenvironment as early as 3 days post orthotopic implantation of KR158 cells; these cells accumulate as tumors increase in size (r=0.7605, p=0.007). CCR2+/CX3CR1+ M-MDSCs isolated from the bone marrow of tumor bearing mice suppress CD8+ T cell production of IFNg and migrate to CCL2 more efficiently than CCL7. CONCLUSION CCR2+/CX3CR1+ cells from glioma bearing mice are derived from the bone marrow and represent an immune suppressive population that migrates to CCL2.


2015 ◽  
Vol 13 (1) ◽  
pp. 9 ◽  
Author(s):  
Ines Chevolet ◽  
Reinhart Speeckaert ◽  
Max Schreuer ◽  
Bart Neyns ◽  
Olga Krysko ◽  
...  

2013 ◽  
Vol 190 (6) ◽  
pp. 2631-2640 ◽  
Author(s):  
Marianna Ioannou ◽  
Themis Alissafi ◽  
Louis Boon ◽  
Dimitrios Boumpas ◽  
Panayotis Verginis

2018 ◽  
Author(s):  
Laura E Martinez ◽  
Valerie P O'Brien ◽  
Christina Leverich ◽  
Sue E Knoblaugh ◽  
Nina R Salama

Half of all humans harbor Helicobacter pylori in their stomachs. Helical cell shape is thought to facilitate H. pylori's ability to bore into the protective mucus layer in a corkscrew-like motion, thus enhancing colonization of the stomach. H. pylori cell shape mutants show impaired colonization of the mouse stomach, highlighting the importance of cell shape in infection. To gain a deeper understanding of how helical cell morphology promotes host colonization by H. pylori, we used 3D-confocal microscopy to visualize the clinical isolate PMSS1 and an isogenic straight rod mutant (Dcsd6) within thick longitudinal mouse stomach sections and performed volumetric image analysis to quantify the number of bacteria residing within corpus and antral glands in addition to measuring total colony forming units (CFU). We found that straight rods show attenuation during acute colonization of the stomach (one day or one week post-infection) as measured by total CFU. Our quantitative imaging revealed that wild-type bacteria extensively colonized antral glands at one week post-infection, while csd6 mutants showed variable colonization of the antrum at this timepoint. During chronic infection (one or three months post-infection), total CFU were highly variable, but similar for wild-type and straight rods. Both wild-type and straight rods persisted and expanded in corpus glands during chronic infection. However, the straight rods showed reduced inflammation and disease progression. Thus, helical cell shape contributes to tissue interactions that promote inflammation during chronic infection, in addition to facilitating niche acquisition during acute infection.


2014 ◽  
Vol 192 (3) ◽  
pp. 1332-1332
Author(s):  
Marianna Ioannou ◽  
Themis Alissafi ◽  
Louis Boon ◽  
Dimitrios Boumpas ◽  
Panayotis Verginis

2012 ◽  
Vol 80 (7) ◽  
pp. 2286-2296 ◽  
Author(s):  
William E. Sause ◽  
Andrea R. Castillo ◽  
Karen M. Ottemann

ABSTRACTThe human pathogenHelicobacter pyloriemploys a diverse collection of outer membrane proteins to colonize, persist, and drive disease within the acidic gastric environment. In this study, we sought to elucidate the function of the host-induced geneHP0289, which encodes an uncharacterized outer membrane protein. We first generated an isogenicH. pylorimutant that lacksHP0289and found that the mutant has a colonization defect in single-strain infections and is greatly outcompeted in mouse coinfection experiments with wild-typeH. pylori. Furthermore, we used protease assays and biochemical fractionation coupled with an HP0289-targeted peptide antibody to verify that the HP0289 protein resides in the outer membrane. Our previous findings showed that theHP0289promoter is upregulated in the mouse stomach, and here we demonstrate thatHP0289expression is induced under acidic conditions in an ArsRS-dependent manner. Finally, we have shown that theHP0289mutant induces greater expression of the chemokine interleukin-8 (IL-8) and the cytokine tumor necrosis factor alpha (TNF-α) in gastric carcinoma cells (AGS). Similarly, transcription of the IL-8 homolog keratinocyte-derived chemokine (KC) is elevated in murine infections with the HP0289 mutant than in murine infections with wild-typeH. pylori. On the basis of this phenotype, we renamed HP0289 ImaA forimmunomodulatoryautotransporter protein. Our work has revealed that genes inducedin vivoplay an important role inH. pyloripathogenesis. Specifically, the outer membrane protein ImaA modulates a component of the host inflammatory response, and thus may allowH. pylorito fine tune the host immune response based on ImaA expression.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.


Sign in / Sign up

Export Citation Format

Share Document