IMMU-05. CCR2+ MYELOID-DERIVED SUPPRESSOR CELLS FROM MURINE GLIOMAS ARE SOURCED FROM THE BONE MARROW, SUPPRESS T CELL ACTIVATION, AND MIGRATE TO CCL2

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi92-vi93
Author(s):  
Gregory Takacs ◽  
Christian Kreiger ◽  
Defang Luo ◽  
Joseph Flores-Toro ◽  
Loic Deleyrolle ◽  
...  

Abstract INTRODUCTION Mounting evidence suggests infiltrating immune-suppressive cells contribute to immune checkpoint inhibitor resistance and poor survival in Glioblastoma (GBM) patients. We have previously shown glioma-associated monocytic-myeloid derived suppressor cells (M-MDSCs) express chemokine receptors CCR2 and CX3CR1. Genetic and pharmacologic targeting of CCR2 promoted sequestration of M-MDSCs in the bone marrow and, in combination with PD-1 blockade, slowed progression of KR158 and 005GSC murine gliomas. This combination treatment also enhanced infiltration of IFNg-producing T cells that were less exhausted. Although CCR2+/CX3CR1+ cells display surface markers indicative of bone marrow-derived M-MDSCs, additional studies are needed to formally establish the source of these cells and to determine if they exhibit an immune-suppressive phenotype as well as migrate to the CCR2 ligands, CCL2 and/or CCL7. OBJECTIVE Evaluate the source, migration, and immune suppressive function of CCR2+/CX3CR1+ myeloid cells from glioma bearing mice. METHODS To identify the source of CCR2+/CX3CR1+ myeloid cells, chimeric wild type mice harboring bone marrow cells from transgenic CCR2WT/RFP/CX3CR1WT/GFP mice were generated. CCR2+/CX3CR1+ cells were enriched from bone marrow obtained from either wild-type or CCR2WT/RFP/CX3CR1WT/GFP naïve and glioma-bearing mice in order to evaluate their immune suppressive phenotype and ability to migrate to CCL2 and CCL7. RESULTS CCR2+/CX3CR1+ cells are present in glioma isolates from chimeric mice, indicative of a bone marrow-derived cell population, and are detectable within the tumor microenvironment as early as 3 days post orthotopic implantation of KR158 cells; these cells accumulate as tumors increase in size (r=0.7605, p=0.007). CCR2+/CX3CR1+ M-MDSCs isolated from the bone marrow of tumor bearing mice suppress CD8+ T cell production of IFNg and migrate to CCL2 more efficiently than CCL7. CONCLUSION CCR2+/CX3CR1+ cells from glioma bearing mice are derived from the bone marrow and represent an immune suppressive population that migrates to CCL2.

2009 ◽  
Vol 70 (1) ◽  
pp. 68-77 ◽  
Author(s):  
Minu K. Srivastava ◽  
Pratima Sinha ◽  
Virginia K. Clements ◽  
Paulo Rodriguez ◽  
Suzanne Ostrand-Rosenberg

Blood ◽  
2011 ◽  
Vol 117 (20) ◽  
pp. 5381-5390 ◽  
Author(s):  
Pratima Sinha ◽  
Olesya Chornoguz ◽  
Virginia K. Clements ◽  
Konstantin A. Artemenko ◽  
Roman A. Zubarev ◽  
...  

Abstract Myeloid-derived suppressor cells (MDSCs) inhibit adaptive and innate immunity and accumulate in the blood of persons with cancer, chronic inflammation, trauma, infection, and stress. Some of the factors inducing their accumulation are known; however, mechanisms regulating their turnover have not been identified. Mass spectrometry showed prominent expression of apoptosis pathway proteins, suggesting that MDSC turnover may be regulated by Fas-FasL–mediated apoptosis. This hypothesis was confirmed by showing that blood MDSCs induced by 3 mouse tumors were Fas+ and apoptosed in response to Fas agonist in vitro and to activated FasL+ T cells in vivo. FasL-deficient mice contained significantly more blood MDSCs than FasL+/+ mice, and after removal of primary tumors MDSCs regressed in STAT6−/− and CD1−/− mice but not in STAT6−/−FasL−/− or CD1−/−FasL−/− mice. Fas+ macrophages and dendritic cells did not apoptose in response to activated T cells, indicating that Fas-FasL regulation of myeloid cells was restricted to MDSCs. These results identify a new mechanism regulating MDSC levels in vivo and show a retaliatory relationship between T cells and MDSCs in that MDSCs suppress T-cell activation; however, once activated, T cells mediate MDSC apoptosis.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1446
Author(s):  
Marloes I. Hofstee ◽  
Anja Heider ◽  
Sonja Häckel ◽  
Caroline Constant ◽  
Martijn Riool ◽  
...  

Staphylococcus aureus is the main causative pathogen of subcutaneous, bone, and implant-related infections, forming structures known as staphylococcal abscess communities (SACs) within tissues that also contain immunosuppressive myeloid-derived suppressor cells (MDSCs). Although both SACs and MDSCs are present in chronic S. aureus infections, it remains unknown whether SACs directly trigger MDSC expansion. To investigate this, a previously developed 3D in vitro SAC model was co-cultured with murine and human bone marrow cells. Subsequently, it was shown that SAC-exposed human CD11blow/− myeloid cells or SAC-exposed murine CD11b+ Gr-1+ cells were immunosuppressive mainly by reducing absolute CD4+ and CD8α+ T cell numbers, as shown in T cell proliferation assays and with flow cytometry. Monocytic MDSCs from mice with an S. aureus bone infection also strongly reduced CD4+ and CD8α+ T cell numbers. Using protein biomarker analysis and an immunoassay, we detected in SAC–bone marrow co-cultures high levels of GM-CSF, IL-6, VEGF, IL-1β, TNFα, IL-10, and TGF-β. Furthermore, SAC-exposed neutrophils expressed Arg-1 and SAC-exposed monocytes expressed Arg-1 and iNOS, as shown via immunofluorescent stains. Overall, this study showed that SACs cause MDSC expansion from bone marrow cells and identified possible mediators to target as an additional strategy for treating chronic S. aureus infections.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1702-1702
Author(s):  
Sterling Eckard ◽  
Bianca Rojo ◽  
Victoria Smith ◽  
Patrick Chun

Abstract Background Myeloid-derived suppressor cells (MDSC) contribute to an immunosuppressive tumor environment and are a barrier to immune therapeutic approaches, including cell-based therapies such as chimeric antigen receptor T cells (CAR T). Despite good overall response rates with certain subsets of B cell leukemias and lymphomas, a significant percentage of patients treated with CAR T therapy do not respond or subsequently relapse. Poor CAR T expansion, poor persistence of infused cells, and clinical treatment failure are associated with tumor and systemic immune dysregulation including high blood levels of peripheral blood monocytic MDSC (M-MDSCs) and interleukin-6, both of which are associated with lack of durable responses 1. In addition, CAR T therapy has been limited by the occurrence of severe cytokine release syndrome (CRS), which is associated with high IL-6 production 2 by myeloid cells such as MDSC. AMV564 is a potent T cell engager that selectively depletes MDSC while promoting T cell activation and proliferation without significant IL-6 induction 3. In phase 1 studies in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and solid tumors, AMV564 has been demonstrated to be clinically safe and active with some patients achieving complete remissions. Methods Cell lines, primary human cells, and patient samples were analyzed using flow cytometry with appropriate marker panels. T cell activation and cytotoxicity assays were conducted using primary human T cells from healthy donors and target cells (3:1 ratio) for 72 hours. T cell activation using ImmunoCult Human CD3/CD28 served as an assay reference. Results Analysis of patients treated with AMV564 demonstrated statistically significant selective depletion of M-MDSC by cycle 2 (Fig. 1A). While on AMV564 therapy, median IL-6 levels remained below 100 pg/mL despite robust T cell activation and expansion. Granzyme B production by CD8 T cells increased significantly between Cycle 1 and Cycle 2 in patients on therapy, and effector CD8 T cells expand over the course of treatment (Fig. 1B-C). These data collectively support the finding that AMV564 both removes a key source of immune suppression and is a potent agonist of T cell function and differentiation in patients. AMV564 potently activates and expands primary T cells ex vivo. Across donors, peak proliferation was significantly higher with AMV564 than with the CD3/CD28 reference (Fig. 2A). Importantly, T cell viability remained significantly higher with AMV564 when compared to reference control (CD3/CD28), and there was no evidence of activation-induced cell death (AICD) in AMV564-treated samples (Fig. 2B). Conclusions AMV564 depletes MDSC and stimulates expansion and longevity of T cells without significant IL-6 induction, suggesting a possible strategy for improvement in efficacy of cell-based therapy such as CAR T approaches. As circulating M-MDSC both at baseline and after CAR T infusion correlate with poor clinical efficacy 4, AMV564 may have beneficial effects during the conditioning phase of cell therapy, after re-infusion of CAR T products into patients, or both. Ex vivo studies using donor T cells and ongoing in vitro studies using CAR T molecules suggest that AMV564 may provide dual benefit with respect to both depletion of MDSC and T cell agonism. References 1. Jain, et al; Blood 2021; 137 (19): 2621-2633. doi: https://doi.org/10.1182/blood.2020007445 2. Li et al., Sci. Transl. Med. 11, eaax8861 (2019) 3. Eckard et al; Cancer Res 2021; (81) (13 Supplement) 528; DOI: 10.1158/1538-7445.AM2021-528 4. Jain, et al; Blood 2019; 134 (Supplement_1): 2885. doi: https://doi.org/10.1182/blood-2019-131041 Figure 1 Figure 1. Disclosures Eckard: Amphivena Therapeutics: Current Employment. Rojo: Amphivena Therapeutics: Current Employment. Smith: Amphivena Therapeutics: Current Employment. Chun: Amphivena Therapeutics: Current Employment.


2018 ◽  
Vol 115 (40) ◽  
pp. 10094-10099 ◽  
Author(s):  
Shan Feng ◽  
Xi Cheng ◽  
Lin Zhang ◽  
Xuemin Lu ◽  
Seema Chaudhary ◽  
...  

Potent immunosuppressive mechanisms within the tumor microenvironment contribute to the resistance of aggressive human cancers to immune checkpoint blockade (ICB) therapy. One of the main mechanisms for myeloid-derived suppressor cells (MDSCs) to induce T cell tolerance is through secretion of reactive nitrogen species (RNS), which nitrates tyrosine residues in proteins involved in T cell function. However, so far very few nitrated proteins have been identified. Here, using a transgenic mouse model of prostate cancer and a syngeneic cell line model of lung cancer, we applied a nitroproteomic approach based on chemical derivation of 3-nitrotyrosine and identified that lymphocyte-specific protein tyrosine kinase (LCK), an initiating tyrosine kinase in the T cell receptor signaling cascade, is nitrated at Tyr394 by MDSCs. LCK nitration inhibits T cell activation, leading to reduced interleukin 2 (IL2) production and proliferation. In human T cells with defective endogenous LCK, wild type, but not nitrated LCK, rescues IL2 production. In the mouse model of castration-resistant prostate cancer (CRPC) by prostate-specific deletion ofPten,p53, andSmad4, CRPC is resistant to an ICB therapy composed of antiprogrammed cell death 1 (PD1) and anticytotoxic–T lymphocyte-associated protein 4 (CTLA4) antibodies. However, we showed that ICB elicits strong anti-CRPC efficacy when combined with an RNS neutralizing agent. Together, these data identify a previously unknown mechanism of T cell inactivation by MDSC-induced protein nitration and illuminate a clinical path hypothesis for combining ICB with RNS-reducing agents in the treatment of CRPC.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2343-2343
Author(s):  
Ying Lu ◽  
Jian-Ming Li ◽  
Wayne Harris ◽  
Edmund Waller

Abstract Both host and donor dendritic cells (DCs) have been shown to play a critical role in regulating graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after MHC-mismatched bone marrow transplantation (BMT) (Shlomchik et al. Science 1999, Reddy et al. Nat Med 2005). In contrast to host DCs, much less is known about the precise mechanisms donor DCs may use to modulate donor T-cell activation and GVL activity. A clinical report has suggested an association between the number of donor plasmacytoid DC in the graft and leukemia relapses after allogeneic BMT (Waller et al. Blood 2001). Using allogeneic MHC-mismatched hematopoietic stem cell transplant (HSCT) (C57BL/6→B10.BR) in mice bearing the T lymphoblastic leukemia LBRM, we have previously reported that recipients transplanted with purified CD11b− DC in combination with purified HSC and T-cells had 45% increased long-term leukemia-free-survival, higher numbers of interferon-γ (IFN-γ) producing donor T-cells as well as higher levels of serum IFN-γ (Li et al. Blood 2007). The aim of the present work is to further define whether production of IFN-γ by donor T-cells is necessary for the augmentation of GVL effect seen with CD11b− donor DC and define the mechanism that donor CD11b− DC can augment GVL of donor T-cells without causing fatal GVHD. To evaluate the role for IFN-γ produced by donor T-cells, we used IFN-γ knockout (KO) mice as donors in the C57BL/6→B10.BR transplant model. Recipients of IFN-γ KO donor T-cells in combination with wild-type FACS-purified HSC and CD11b− DC died rapidly with 0% survival at day 80 compared with 65% survival among tumor-bearing recipients of donor CD11b− with wild-type HSC and T-cells and 75% survival in mice transplanted with wild-type cells in the absence of LBRM. Moreover, the addition of donor CD11b− DC to IFN-γ KO donor T-cells did not lead to further augmentation of GVHD. These data supported a role for donor T-cell-derived IFN-γ in the enhanced GVL activity seen among recipients of donor CD11b− DC,but did not explain the lack of increased GVHD. As a potent pro-inflammatory cytokine initiating immune response in GVHD, IFN-γ has also been demonstrated to show a suppressive effect during GVHD as a result of IFN-γ-inducible indoleamine-2,3-dioxygenase(IDO) gene expression. CD11b− DCs were freshly isolated from bone marrow of donor C57BL/6 mice, exposed to 100ng/ml IFN-γ for 18 hours, and the IDO expression was measured by intracellular staining. The results showed that following IFN-γ treatment, IDO levels of CD11b− DCs were up-regulated. Furthermore, in vitro co-culture of FACS-purified CD11b− DC with syngeneic T-cells in the presence of allogeneic antigen also demonstrated increased IDO levels on the co-cultured DCs. Taken together, our data support a model in which donor CD11b− DCs initially induce Th1 polarization of activated donor T-cells that secret high levels of IFN-γ in the lymph node microenvironment. High local levels of IFN-γ subsequently induce IDO expression in DC, resulting in down-modulation of T-cell allo-reactivity and GVHD. Thus, IFN-γ-induced IDO expression on CD11b− donor DCs appears to be a critical downstream event that inhibits continued T-cell activation and leads to less severe GVHD.


Immunobiology ◽  
2013 ◽  
Vol 218 (11) ◽  
pp. 1385-1391 ◽  
Author(s):  
Elio Schouppe ◽  
Eva Van Overmeire ◽  
Damya Laoui ◽  
Jiri Keirsse ◽  
Jo A. Van Ginderachter

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3686-3686
Author(s):  
Hideaki Maeba ◽  
Ryosei Nishimura ◽  
Rie Kuroda ◽  
Raita Araki ◽  
Shintaro Mase ◽  
...  

Abstract Abstract 3686 Poster Board III-622 Dendritic cells (DCs) are a heterogenous population of antigen-presenting cells (APCs) that contribute to innate immunity and initiate the adaptive immune response. In addition, recent studies demonstrated the existence of tolerogenic DCs (TDCs) that suppress the immunoreaction. Although the tolerogenic mechanisms are not fully understood, there are some methods reported to generate TDCs from conventional DCs by using cytokines such as IL-10/TGF-beta, vasoactive intestinal peptide (VIP), and IL-21. With the purpose of potential application of TDCs in a clinical bone marrow transplantation for preventing graft-versus-host disease (GVHD), which is caused by strong immunoreaction between host-typed conventional DCs and donor-typed naïve T cells, the establishment of much safer and easier, and more efficient TDCs culture system would be needed. To this end, we investigated whether treatment of conventional DCs with psoralen plus UVA (PUVA), which is widely and safely available in the treatment of some human immune disease and organ transplantation for preventing graft rejection, induced a subset of highly potent TDCs. Bone marrow cells obtained from Balb/c (H-2d) or C57BL/6 (H-2b) were incubated in complete RPMI containing GM-CSF for 10 days to generate bone marrow derived DCs (BM-DCs). BM-DCs were cultured with Psoralen (200 ng/mL) for 30 miniutes and then exposed to UVA light (2J/cm2). After 24 hours UVA irradiation, PUVA-treated DCs were collected and used in all experiments. First, PUVA-treated or untreated DCs with irradiatin were used as stimulator for allogenic splenocytes in mixed leukocyte reactions (MLR). The immunostimulatory capacity of PUVA-treated DCs was significantly diminished compared to those of untreated DCs (p<0.01). The expression levels of CD80 and CD86 by FACS, both of which are costimulatory molecules for T cell activation, was significantly reduced after PUVA treatment (p<0.05). This might explain for the induction of hyporesponsiveness in part. Next we further evaluated whether PUVA-treated DCs directly suppress T cell alloreaciton by cell-to-cell contact. Proliferation was inhibited when PUVA-treated DCs from the stimulator strain were added to the coculture, with a maximum reduction in proliferation of 95% at a 1:1 or higher ratio of untreated DCs to PUVA-treated DCs (Attached file). In conclusion, PUVA-treated DCs directly inhibit T cell alloreaction. Infusion of host-typed PUVA-treated DCs would be potent strategy for preventing lethal acute GVHD. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 114 (5) ◽  
pp. 1117-1122 ◽  
Author(s):  
Victor Prima ◽  
Lyudmila N. Kaliberova ◽  
Sergey Kaliberov ◽  
David T. Curiel ◽  
Sergei Kusmartsev

In recent years, it has been established that programmed cell death protein ligand 1 (PD-L1)–mediated inhibition of activated PD-1+T lymphocytes plays a major role in tumor escape from immune system during cancer progression. Lately, the anti–PD-L1 and –PD-1 immune therapies have become an important tool for treatment of advanced human cancers, including bladder cancer. However, the underlying mechanisms of PD-L1 expression in cancer are not fully understood. We found that coculture of murine bone marrow cells with bladder tumor cells promoted strong expression of PD-L1 in bone marrow–derived myeloid cells. Tumor-induced expression of PD-L1 was limited to F4/80+macrophages and Ly-6C+myeloid-derived suppressor cells. These PD-L1–expressing cells were immunosuppressive and were capable of eliminating CD8 T cells in vitro. Tumor-infiltrating PD-L1+cells isolated from tumor-bearing mice also exerted morphology of tumor-associated macrophages and expressed high levels of prostaglandin E2(PGE2)-forming enzymes microsomal PGE2synthase 1 (mPGES1) and COX2. Inhibition of PGE2formation, using pharmacologic mPGES1 and COX2 inhibitors or genetic overexpression of PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH), resulted in reduced PD-L1 expression. Together, our study demonstrates that the COX2/mPGES1/PGE2pathway involved in the regulation of PD-L1 expression in tumor-infiltrating myeloid cells and, therefore, reprogramming of PGE2metabolism in tumor microenvironment provides an opportunity to reduce immune suppression in tumor host.


Sign in / Sign up

Export Citation Format

Share Document