scholarly journals Systems Modeling of the Role of Interleukin-21 in the Maintenance of Effector CD4+ T Cell Responses during Chronic Helicobacter pylori Infection

mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.

2012 ◽  
Vol 81 (2) ◽  
pp. 580-584 ◽  
Author(s):  
Stéphane L. Benoit ◽  
Erica F. Miller ◽  
Robert J. Maier

ABSTRACTThe transition metal nickel (Ni) is critical for the pathogenicity ofHelicobacter pylori. Indeed the element is a required component of two enzymes, hydrogenase and urease, that have been shown to be important forin vivocolonization of the host gastric mucosa. Urease accounts for up to 10% of the total cellularH. pyloriprotein content, and therefore the bacterial Ni demand is very high.H. pyloripossess two small and abundant histidine-rich, Ni-binding proteins, Hpn and Hpn-like, whose physiological role in the host have not been investigated. In this study, special husbandry conditions were used to control Ni levels in the host (mouse), including the use of Ni-free versus Ni-supplemented food. The efficacy of each diet was confirmed by measuring the Ni concentrations in sera of mice fed with either diet. Colonization levels (based on rank tests) of theΔhpn Δhpn-like double mutants isolated from the mice provided Ni-deficient chow were statistically lower than those for mice given Ni in their diet. In contrast,H. pyloriwild-type colonization levels were similar in both host groups (e.g., regardless of Ni levels). Our results indicate that the gastric pathogenH. pylorican utilize stored Ni via defined histidine-rich proteins to aid colonization of the host.


2017 ◽  
Vol 85 (10) ◽  
Author(s):  
Kaisa Thorell ◽  
Johan Bengtsson-Palme ◽  
Oscar Hsin-Fu Liu ◽  
Reyna Victoria Palacios Gonzales ◽  
Intawat Nookaew ◽  
...  

ABSTRACT Emerging evidence shows that the human microbiota plays a larger role in disease progression and health than previously anticipated. Helicobacter pylori, the causative agent of gastric cancer and duodenal and gastric ulcers, was early associated with gastric disease, but it has also been proposed that the accompanying microbiota in Helicobacter pylori-infected individuals might affect disease progression and gastric cancer development. In this study, the composition of the transcriptionally active microbial community and H. pylori gene expression were determined using metatranscriptomic RNA sequencing of stomach biopsy specimens from individuals with different H. pylori infection statuses and premalignant tissue changes. The results show that H. pylori completely dominates the microbiota not only in infected individuals but also in most individuals classified as H. pylori uninfected using conventional methods. Furthermore, H. pylori abundance is positively correlated with the presence of Campylobacter, Deinococcus, and Sulfurospirillum. Finally, we quantified the expression of a large number of Helicobacter pylori genes and found high expression of genes involved in pH regulation and nickel transport. Our study is the first to dissect the viable microbiota of the human stomach by metatranscriptomic analysis, and it shows that metatranscriptomic analysis of the gastric microbiota is feasible and can provide new insights into how bacteria respond in vivo to variations in the stomach microenvironment and at different stages of disease progression.


2011 ◽  
Vol 79 (7) ◽  
pp. 2535-2543 ◽  
Author(s):  
Jana N. Radin ◽  
Christian González-Rivera ◽  
Susan E. Ivie ◽  
Mark S. McClain ◽  
Timothy L. Cover

ABSTRACTHelicobacter pyloriis a Gram-negative bacterium that colonizes the human stomach and contributes to the development of peptic ulcer disease and gastric cancer. The secreted pore-forming toxin VacA is one of the major virulence factors ofH. pylori. In the current study, we show that AZ-521 human gastric epithelial cells are highly susceptible to VacA-induced cell death. Wild-type VacA causes death of these cells, whereas mutant VacA proteins defective in membrane channel formation do not. Incubation of AZ-521 cells with wild-type VacA results in cell swelling, poly(ADP-ribose) polymerase (PARP) activation, decreased intracellular ATP concentration, and lactate dehydrogenase (LDH) release. VacA-induced death of these cells is a caspase-independent process that results in cellular release of histone-binding protein high mobility group box 1 (HMGB1), a proinflammatory protein. These features are consistent with the occurrence of cell death through a programmed necrosis pathway and suggest that VacA can be included among the growing number of bacterial pore-forming toxins that induce cell death through programmed necrosis. We propose that VacA augmentsH. pylori-induced mucosal inflammation in the human stomach by causing programmed necrosis of gastric epithelial cells and subsequent release of proinflammatory proteins and may thereby contribute to the pathogenesis of gastric cancer and peptic ulceration.


2010 ◽  
Vol 78 (7) ◽  
pp. 3073-3082 ◽  
Author(s):  
Shana Miles ◽  
M. Blanca Piazuelo ◽  
Cristina Semino-Mora ◽  
Mary Kay Washington ◽  
Andre Dubois ◽  
...  

ABSTRACT Helicobacter pylori persistently colonizes the harsh and dynamic environment of the stomach in over one-half of the world's population and has been identified as a causal agent in a spectrum of pathologies that range from gastritis to invasive adenocarcinoma. The ferric uptake regulator (Fur) is one of the few regulatory proteins that has been identified in H. pylori. Fur regulates genes important for acid acclimation and oxidative stress and has been shown to be important for colonization of H. pylori in both murine and Mongolian gerbil models of infection. To more thoroughly define the role of Fur in vivo, we conducted an extensive temporal analysis of the location of, competitive ability of, and resultant pathology induced by a Δfur strain in the Mongolian gerbil model of infection and compared the results to results for its wild-type parent. We found that at the earliest time points postinfection, significantly more Δfur bacteria than wild-type bacteria were recovered. However, this trend was reversed by day 3, when there was significantly increased recovery of the wild-type strain. The increased recovery of the Δfur strain at 1 day postinfection reflected increased recovery from both the corpus and the antrum of the stomach. When the wild-type strain was allowed to colonize first, the Δfur strain was unable to compete for colonization at any time postinfection. However, when the Δfur strain was allowed to colonize first, the wild type efficiently outcompeted the Δfur strain only at early times postinfection. Finally, we demonstrated that there was a delay in the development and severity of inflammation and pathology of the Δfur strain in the gastric mucosa even after comparable levels of colonization occurred. Together, these data indicate that H. pylori Fur is most important at early stages of infection and illustrate the importance of the ability of H. pylori to adapt to its constantly fluctuating environment when it is establishing infection, inflammation, and disease.


2011 ◽  
Vol 80 (2) ◽  
pp. 594-601 ◽  
Author(s):  
Francisco Avilés-Jiménez ◽  
Adriana Reyes-Leon ◽  
Erik Nieto-Patlán ◽  
Lori M. Hansen ◽  
Juan Burgueño ◽  
...  

ABSTRACTThe best-studiedHelicobacter pylorivirulence factor associated with development of peptic ulcer disease or gastric cancer (GC) rather than asymptomatic nonatrophic gastritis (NAG) is thecagpathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into host epithelial cells. Here we used real-time reverse transcription-PCR (RT-PCR) to measure thein vivoexpression of genes on thecagPAI and of other virulence genes in patients with NAG, duodenal ulcer (DU), or GC.In vivoexpression ofH. pylorivirulence genes was greater overall in gastric biopsy specimens of patients with GC than in those of patients with NAG or DU. However, sincein vitroexpression ofcagAwas not greater inH. pyloristrains from patients with GC than in those from patients with NAG or DU, increased expression in GCin vivois likely a result of environmental conditions in the gastric mucosa, though it may in turn cause more severe pathology. Increased expression of virulence genes in GC may represent a stress response to elevated pH or other environmental conditions in the stomach of patients with GC, which may be less hospitable toH. pyloricolonization than the acidic environment in patients with NAG or DU.


2014 ◽  
Vol 82 (10) ◽  
pp. 4182-4189 ◽  
Author(s):  
Katsuhiro Hanada ◽  
Tomohisa Uchida ◽  
Yoshiyuki Tsukamoto ◽  
Masahide Watada ◽  
Nahomi Yamaguchi ◽  
...  

ABSTRACTGastric cancer is an inflammation-related malignancy related to long-standing acute and chronic inflammation caused by infection with the human bacterial pathogenHelicobacter pylori. Inflammation can result in genomic instability. However, there are considerable data thatH. pyloriitself can also produce genomic instability both directly and through epigenetic pathways. Overall, the mechanisms ofH. pylori-induced host genomic instabilities remain poorly understood. We used microarray screening ofH. pylori-infected human gastric biopsy specimens to identify candidate genes involved inH. pylori-induced host genomic instabilities. We found upregulation ofATMexpressionin vivoin gastric mucosal cells infected withH. pylori. Using gastric cancer cell lines, we confirmed that theH. pylori-related activation of ATM was due to the accumulation of DNA double-strand breaks (DSBs). DSBs were observed following infection with bothcagpathogenicity island (PAI)-positive and -negative strains, but the effect was more robust withcagPAI-positive strains. These results are consistent with the fact that infections with bothcagPAI-positive and -negative strains are associated with gastric carcinogenesis, but the risk is higher in individuals infected withcagPAI-positive strains.


2013 ◽  
Vol 81 (10) ◽  
pp. 3534-3551 ◽  
Author(s):  
Wiebke Behrens ◽  
Tobias Schweinitzer ◽  
Joena Bal ◽  
Martina Dorsch ◽  
André Bleich ◽  
...  

ABSTRACTHelicobacter pylorimaintains colonization in its human host using a limited set of taxis sensors. TlpD is a proposed energy taxis sensor ofH. pyloriand dominant under environmental conditions of low bacterial energy yield. We studied the impact ofH. pyloriTlpD on colonizationin vivousing a gerbil infection model which closely mimics the gastric physiology of humans. A gerbil-adaptedH. pyloristrain, HP87 P7, showed energy-dependent behavior, while its isogenictlpDmutant lost it. A TlpD-complemented strain regained the wild-type phenotype. Infection of gerbils with the complemented strain demonstrated that TlpD is important for persistent infection in the antrum and corpus and suggested a role of TlpD in horizontal navigation and persistent corpus colonization. As a part of the full characterization of the model and to gain insight into the genetic basis ofH. pyloriadaptation to the gerbil, we determined the complete genome sequences of the gerbil-adapted strain HP87 P7, two HP87 P7tlpDmutants before and after gerbil passage, and the original human isolate, HP87. The integrity of the genome, including that of a functionalcagpathogenicity island, was maintained after gerbil adaptation. Genetic and phenotypic differences between the strains were observed. Major differences between the gerbil-adapted strain and the human isolate emerged, including evidence of recent recombination. Passage of thetlpDmutant through the gerbil selected for gain-of-function variation in a fucosyltransferase gene,futC(HP0093). In conclusion, a gerbil-adaptedH. pyloristrain with a stable genome has helped to establish that TlpD has important functions for persistent colonization in the stomach.


2012 ◽  
Vol 80 (7) ◽  
pp. 2286-2296 ◽  
Author(s):  
William E. Sause ◽  
Andrea R. Castillo ◽  
Karen M. Ottemann

ABSTRACTThe human pathogenHelicobacter pyloriemploys a diverse collection of outer membrane proteins to colonize, persist, and drive disease within the acidic gastric environment. In this study, we sought to elucidate the function of the host-induced geneHP0289, which encodes an uncharacterized outer membrane protein. We first generated an isogenicH. pylorimutant that lacksHP0289and found that the mutant has a colonization defect in single-strain infections and is greatly outcompeted in mouse coinfection experiments with wild-typeH. pylori. Furthermore, we used protease assays and biochemical fractionation coupled with an HP0289-targeted peptide antibody to verify that the HP0289 protein resides in the outer membrane. Our previous findings showed that theHP0289promoter is upregulated in the mouse stomach, and here we demonstrate thatHP0289expression is induced under acidic conditions in an ArsRS-dependent manner. Finally, we have shown that theHP0289mutant induces greater expression of the chemokine interleukin-8 (IL-8) and the cytokine tumor necrosis factor alpha (TNF-α) in gastric carcinoma cells (AGS). Similarly, transcription of the IL-8 homolog keratinocyte-derived chemokine (KC) is elevated in murine infections with the HP0289 mutant than in murine infections with wild-typeH. pylori. On the basis of this phenotype, we renamed HP0289 ImaA forimmunomodulatoryautotransporter protein. Our work has revealed that genes inducedin vivoplay an important role inH. pyloripathogenesis. Specifically, the outer membrane protein ImaA modulates a component of the host inflammatory response, and thus may allowH. pylorito fine tune the host immune response based on ImaA expression.


2004 ◽  
Vol 72 (9) ◽  
pp. 5506-5510 ◽  
Author(s):  
John T. Loh ◽  
Mark H. Forsyth ◽  
Timothy L. Cover

ABSTRACT LuxS plays a role in the synthesis of an extracellular signaling molecule, autoinducer 2 (AI-2). To analyze a possible role of AI-2 in regulating Helicobacter pylori gene expression, we constructed a panel of transcriptional reporter strains. We show that the expression of H. pylori flaA is growth phase dependent and that flaA transcription increases in association with increased culture density. Mutating the luxS gene eliminates growth-phase-dependent control of flaA, and this growth phase dependence is restored when the luxS mutant strain is complemented with the wild-type luxS gene.


2007 ◽  
Vol 293 (3) ◽  
pp. F741-F747 ◽  
Author(s):  
Kathrin Hochegger ◽  
Tobias Schätz ◽  
Philipp Eller ◽  
Andrea Tagwerker ◽  
Dorothea Heininger ◽  
...  

T cells have been implicated in the pathogenesis of renal ischemia-reperfusion injury (IRI). To date existing data about the role of the T cell receptor (Tcr) are contradictory. We hypothesize that the Tcr plays a prominent role in the late phase of renal IRI. Therefore, renal IRI was induced in α/β, γ/δ T cell-deficient and wild-type mice by clamping renal pedicles for 30 min and reperfusing for 24, 48, 72, and 120 h. Serum creatinine increased equally in all three groups 24 h after ischemia but significantly improved in Tcr-deficient animals compared with wild-type controls after 72 h. A significant reduction in renal tubular injury and infiltration of CD4+ T-cells in both Tcr-deficient mice compared with wild-type controls was detected. Infiltration of α/β T cells into the kidney was reduced in γ/δ T cell-deficient mice until 72 h after ischemia. In contrast, γ/δ T cell infiltration was equal in wild-type and α/β T cell-deficient mice, suggesting an interaction between α/β and γ/δ T cells. Data from γ/δ T cell-deficient mice were confirmed by in vivo depletion of γ/δ T cells in C57BL/6 mice. Whereas α/β T cell-deficient mice were still protected after 120 h, γ/δ T cell-deficient mice showed a “delayed wild-type phenotype” with a dramatic increase in kidney-infiltrating α/β, Tcr-expressing CD4+ T-cells. This report provides further evidence that α/β T cells are major effector cells in renal IRI, whereas γ/δ T cells play a role as mediator cells in the first 72 h of renal IRI.


Sign in / Sign up

Export Citation Format

Share Document