scholarly journals Localization of Burkholderia cepacia Complex Bacteria in Cystic Fibrosis Lungs and Interactions with Pseudomonas aeruginosa in Hypoxic Mucus

2014 ◽  
Vol 82 (11) ◽  
pp. 4729-4745 ◽  
Author(s):  
Ute Schwab ◽  
Lubna H. Abdullah ◽  
Olivia S. Perlmutt ◽  
Daniel Albert ◽  
C. William Davis ◽  
...  

ABSTRACTThe localization ofBurkholderia cepaciacomplex (Bcc) bacteria in cystic fibrosis (CF) lungs, alone or during coinfection withPseudomonas aeruginosa, is poorly understood. We performed immunohistochemistry for Bcc andP. aeruginosabacteria on 21 coinfected or singly infected CF lungs obtained at transplantation or autopsy. Parallelin vitroexperiments examined the growth of two Bcc species,Burkholderia cenocepaciaandBurkholderia multivorans, in environments similar to those occupied byP. aeruginosain the CF lung. Bcc bacteria were predominantly identified in the CF lung as single cells or small clusters within phagocytes and mucus but not as “biofilm-like structures.” In contrast,P. aeruginosawas identified in biofilm-like masses, but densities appeared to be reduced during coinfection with Bcc bacteria. Based on chemical analyses of CF and non-CF respiratory secretions, a test medium was defined to study Bcc growth and interactions withP. aeruginosain an environment mimicking the CF lung. When test medium was supplemented with alternative electron acceptors under anaerobic conditions,B. cenocepaciaandB. multivoransused fermentation rather than anaerobic respiration to gain energy, consistent with the identification of fermentation products by high-performance liquid chromatography (HPLC). Both Bcc species also expressed mucinases that produced carbon sources from mucins for growth. In the presence ofP. aeruginosain vitro, both Bcc species grew anaerobically but not aerobically. We propose that Bcc bacteria (i) invade aP. aeruginosa-infected CF lung when the airway lumen is anaerobic, (ii) inhibitP. aeruginosabiofilm-like growth, and (iii) expand the host bacterial niche from mucus to also include macrophages.

2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Vidya P. Narayanaswamy ◽  
Andrew P. Duncan ◽  
John J. LiPuma ◽  
William P. Wiesmann ◽  
Shenda M. Baker ◽  
...  

ABSTRACT Burkholderia cepacia complex (Bcc) lung infections in cystic fibrosis (CF) patients are often associated with a steady decline in lung function and death. The formation of biofilms and inherent multidrug resistance are virulence factors associated with Bcc infection and contribute to increased risk of mortality in CF patients. New therapeutic strategies targeting bacterial biofilms are anticipated to enhance antibiotic penetration and facilitate resolution of infection. Poly (acetyl, arginyl) glucosamine (PAAG) is a cationic glycopolymer therapeutic being developed to directly target biofilm integrity. In this study, 13 isolates from 7 species were examined, including Burkholderia multivorans, Burkholderia cenocepacia, Burkholderia gladioli, Burkholderia dolosa, Burkholderia vietnamiensis, and B. cepacia. These isolates were selected for their resistance to standard clinical antibiotics and their ability to form biofilms in vitro. Biofilm biomass was quantitated using static tissue culture plate (TCP) biofilm methods and a minimum biofilm eradication concentration (MBEC) assay. Confocal laser scanning microscopy (CLSM) visualized biofilm removal by PAAG during treatment. Both TCP and MBEC methods demonstrated a significant dose-dependent relationship with regard to biofilm removal by 50 to 200 μg/ml PAAG following a 1-h treatment (P < 0.01). A significant reduction in biofilm thickness was observed following a 10-min treatment of Bcc biofilms with PAAG compared to that with vehicle control (P < 0.001) in TCP, MBEC, and CLSM analyses. PAAG also rapidly permeabilizes bacteria within the first 10 min of treatment. Glycopolymers, such as PAAG, are a new class of large-molecule therapeutics that support the treatment of recalcitrant Bcc biofilm.


2016 ◽  
Vol 84 (5) ◽  
pp. 1424-1437 ◽  
Author(s):  
Siobhán McClean ◽  
Marc E. Healy ◽  
Cassandra Collins ◽  
Stephen Carberry ◽  
Luke O'Shaughnessy ◽  
...  

Members of theBurkholderia cepaciacomplex (Bcc) cause chronic opportunistic lung infections in people with cystic fibrosis (CF), resulting in a gradual lung function decline and, ultimately, patient death. The Bcc is a complex of 20 species and is rarely eradicated once a patient is colonized; therefore, vaccination may represent a better therapeutic option. We developed a new proteomics approach to identify bacterial proteins that are involved in the attachment of Bcc bacteria to lung epithelial cells. Fourteen proteins were reproducibly identified by two-dimensional gel electrophoresis from four Bcc strains representative of two Bcc species:Burkholderia cenocepacia, the most virulent, andB. multivorans, the most frequently acquired. Seven proteins were identified in both species, but only two were common to all four strains, linocin and OmpW. Both proteins were selected based on previously reported data on these proteins in other species.Escherichia colistrains expressing recombinant linocin and OmpW showed enhanced attachment (4.2- and 3.9-fold) to lung cells compared to the control, confirming that both proteins are involved in host cell attachment. Immunoproteomic analysis using serum from Bcc-colonized CF patients confirmed that both proteins elicit potent humoral responsesin vivo. Mice immunized with either recombinant linocin or OmpW were protected fromB. cenocepaciaandB. multivoranschallenge. Both antigens induced potent antigen-specific antibody responses and stimulated strong cytokine responses. In conclusion, our approach identified adhesins that induced excellent protection against two Bcc species and are promising vaccine candidates for a multisubunit vaccine. Furthermore, this study highlights the potential of our proteomics approach to identify potent antigens against other difficult pathogens.


2015 ◽  
Vol 60 (1) ◽  
pp. 348-355 ◽  
Author(s):  
Sarah Kennedy ◽  
Trevor Beaudoin ◽  
Yvonne C. W. Yau ◽  
Emma Caraher ◽  
James E. A. Zlosnik ◽  
...  

ABSTRACTPulmonary infection withBurkholderia cepaciacomplex in cystic fibrosis (CF) patients is associated with more-rapid lung function decline and earlier death than in CF patients without this infection. In this study, we used confocal microscopy to visualize the effects of various concentrations of tobramycin, achievable with systemic and aerosolized drug administration, on matureB. cepaciacomplex biofilms, both in the presence and absence of CF sputum. After 24 h of growth, biofilm thickness was significantly reduced by exposure to 2,000 μg/ml of tobramycin forBurkholderia cepacia,Burkholderia multivorans, andBurkholderia vietnamiensis; 200 μg/ml of tobramycin was sufficient to reduce the thickness ofBurkholderia dolosabiofilm. With a more mature 48-h biofilm, significant reductions in thickness were seen with tobramycin at concentrations of ≥100 μg/ml for allBurkholderiaspecies. In addition, an increased ratio of dead to live cells was observed in comparison to control with tobramycin concentrations of ≥200 μg/ml forB. cepaciaandB. dolosa(24 h) and ≥100 μg/ml forBurkholderia cenocepaciaandB. dolosa(48 h). Although sputum significantly increased biofilm thickness, tobramycin concentrations of 1,000 μg/ml were still able to significantly reduce biofilm thickness of allB. cepaciacomplex species with the exception ofB. vietnamiensis. In the presence of sputum, 1,000 μg/ml of tobramycin significantly increased the dead-to-live ratio only forB. multivoranscompared to control. In summary, although killing is attenuated, high-dose tobramycin can effectively decrease the thickness ofB. cepaciacomplex biofilms, even in the presence of sputum, suggesting a possible role as a suppressive therapy in CF.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Dale M. Mazer ◽  
Carol Young ◽  
Linda M. Kalikin ◽  
Theodore Spilker ◽  
John J. LiPuma

ABSTRACT We tested the activities of ceftolozane-tazobactam and 13 other antimicrobial agents against 221 strains of Burkholderia cepacia complex and Burkholderia gladioli. Most strains (82%) were cultured from persons with cystic fibrosis, and most (85%) were recovered since 2011. The ceftolozane-tazobactam MIC was ≤8 μg/ml for 77% of the strains. However, the MIC range was broad (≤0.5 to >64 μg/ml; MIC50/90, 2/32 μg/ml). Significant differences in susceptibility to some antimicrobial agents were observed between species.


2016 ◽  
Vol 60 (10) ◽  
pp. 6200-6206 ◽  
Author(s):  
Douglas Fraser-Pitt ◽  
Derry Mercer ◽  
Emma Lovie ◽  
Jennifer Robertson ◽  
Deborah O'Neil

ABSTRACTThere are no wholly successful chemotherapeutic strategies againstBurkholderia cepaciacomplex (BCC) colonization in cystic fibrosis (CF). We assessed the impact of cysteamine (Lynovex) in combination with standard-of-care CF antibioticsin vitroagainst BCC CF isolates by the concentration at which 100% of bacteria were killed (MIC100) and checkerboard assays under CLSI standard conditions. Cysteamine facilitated the aminoglycoside-, fluoroquinolone- and folate pathway inhibitor-mediated killing of BCC organisms that were otherwise resistant or intermediately sensitive to these antibiotic classes. Slow-growing BCC strains are often recalcitrant to treatment and form biofilms. In assessing the impact of cysteamine on biofilms, we demonstrated inhibition of BCC biofilm formation at sub-MIC100s of cysteamine.


2017 ◽  
Vol 199 (13) ◽  
Author(s):  
Steve P. Bernier ◽  
Courtney Hum ◽  
Xiang Li ◽  
George A. O'Toole ◽  
Nathan A. Magarvey ◽  
...  

ABSTRACT Competitive interactions mediated by released chemicals (e.g., toxins) are prominent in multispecies communities, but the effects of these chemicals at subinhibitory concentrations on susceptible bacteria are poorly understood. Although Pseudomonas aeruginosa and species of the Burkholderia cepacia complex (Bcc) can exist together as a coinfection in cystic fibrosis airways, P. aeruginosa toxins can kill Bcc species in vitro. Consequently, these bacteria become an ideal in vitro model system to study the impact of sublethal levels of toxins on the biology of typical susceptible bacteria, such as the Bcc, when exposed to P. aeruginosa toxins. Using P. aeruginosa spent medium as a source of toxins, we showed that a small window of subinhibitory concentrations modulated the colony morphotype and swarming motility of some but not all tested Bcc strains, for which rhamnolipids were identified as the active molecule. Using a random transposon mutagenesis approach, we identified several genes required by the Bcc to respond to low concentrations of rhamnolipids and consequently affect the ability of this microbe to change its morphotype and swarm over surfaces. Among those genes identified were those coding for type IVb-Tad pili, which are often required for virulence in various bacterial pathogens. Our study demonstrates that manipulating chemical gradients in vitro can lead to the identification of bacterial behaviors relevant to polymicrobial infections. IMPORTANCE Interspecies interactions can have profound effects on the development and outcomes of polymicrobial infections. Consequently, improving the molecular understanding of these interactions could provide us with new insights on the possible long-term consequences of these chronic infections. In this study, we show that P. aeruginosa-derived rhamnolipids, which participate in Bcc killing at high concentrations, can also trigger biological responses in Burkholderia spp. at low concentrations. The modulation of potential virulence phenotypes in the Bcc by P. aeruginosa suggests that these interactions contribute to pathogenesis and disease severity in the context of polymicrobial infections.


2019 ◽  
Vol 57 (8) ◽  
Author(s):  
Elise T. Zeiser ◽  
Scott A. Becka ◽  
Brigid M. Wilson ◽  
Melissa D. Barnes ◽  
John J. LiPuma ◽  
...  

ABSTRACT In persons with cystic fibrosis (CF), airway infection with Burkholderia cepacia complex (Bcc) species or Burkholderia gladioli presents a significant challenge due to inherent resistance to multiple antibiotics. Two chromosomally encoded inducible β-lactamases, a Pen-like class A and AmpC are produced in Bcc and B. gladioli. Previously, ceftazidime-avibactam demonstrated significant potency against Bcc and B. gladioli isolated from the sputum of individuals with CF; however, 10% of the isolates tested resistant to ceftazidime-avibactam. Here, we describe an alternative antibiotic combination to overcome ceftazidime-avibactam resistance. Antimicrobial susceptibility testing was performed on Bcc and B. gladioli clinical and control isolates. Biochemical analysis was conducted on purified PenA1 and AmpC1 β-lactamases from Burkholderia multivorans ATCC 17616. Analytic isoelectric focusing and immunoblotting were conducted on cellular extracts of B. multivorans induced by various β-lactams or β-lactam-β-lactamase inhibitor combinations. Combinations of piperacillin-avibactam, as well as piperacillin-tazobactam plus ceftazidime-avibactam (the clinically available counterpart), were tested against a panel of ceftazidime-avibactam nonsusceptible Bcc and B. gladioli. The piperacillin-avibactam and piperacillin-tazobactam-ceftazidime-avibactam combinations restored susceptibility to 99% of the isolates tested. Avibactam is a potent inhibitor of PenA1 (apparent inhibitory constant [Ki app] = 0.5 μM), while piperacillin was found to inhibit AmpC1 (Ki app = 2.6 μM). Moreover, piperacillin, tazobactam, ceftazidime, and avibactam, as well as combinations thereof, did not induce expression of blapenA1 and blaampC1 in the B. multivorans ATCC 17616 background. When ceftazidime-avibactam is combined with piperacillin-tazobactam, the susceptibility of Bcc and B. gladioli to ceftazidime and piperacillin is restored in vitro. Both the lack of blapenA1 induction and potent inactivation of PenA1 by avibactam likely provide the major contributions toward susceptibility. With in vivo validation, piperacillin-tazobactam-ceftazidime-avibactam may represent salvage therapy for individuals with CF and highly drug-resistant Bcc and B. gladioli infections.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Rasmus Lykke Marvig ◽  
Søren Damkiær ◽  
S. M. Hossein Khademi ◽  
Trine M. Markussen ◽  
Søren Molin ◽  
...  

ABSTRACTPseudomonas aeruginosaairway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist,P. aeruginosadepends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes the pyoverdine siderophore and thePseudomonasheme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation ofP. aeruginosato the host environment. Here we investigated the within-host evolution of the transmissibleP. aeruginosaDK2 lineage. We found positive selection for promoter mutations leading to increased expression of thephusystem. By mimicking conditions of the CF airwaysin vitro, we experimentally demonstrate that increased expression ofphuRconfers a growth advantage in the presence of hemoglobin, thus suggesting thatP. aeruginosaevolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additionalP. aeruginosalineages isolated from CF airways and found similar adaptive evolution in two distinct lineages (DK1 and PA clone C). Furthermore, in all three lineages,phuRpromoter mutations coincided with the loss of pyoverdine production, suggesting that within-host adaptation toward heme utilization is triggered by the loss of pyoverdine production. Targeting heme utilization might therefore be a promising strategy for the treatment ofP. aeruginosainfections in CF patients.IMPORTANCEMost bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability of the opportunistic pathogenPseudomonas aeruginosato cause chronic infections in cystic fibrosis (CF) patients also depends on iron-scavenging systems. While the regulation and mechanisms of several such iron-scavenging systems have been well described, not much is known about how the within-host selection pressures act on the pathogens’ ability to acquire iron. Here, we investigated the within-host evolution ofP. aeruginosa, and we found evidence thatP. aeruginosaduring long-term infections evolves toward iron acquisition from hemoglobin. This adaptive strategy might be due to a selective loss of other iron-scavenging mechanisms and/or an increase in the availability of hemoglobin at the site of infection. This information is relevant to the design of novel CF therapeutics and the development of models of chronic CF infections.


Sign in / Sign up

Export Citation Format

Share Document