promoter mutations
Recently Published Documents


TOTAL DOCUMENTS

697
(FIVE YEARS 209)

H-INDEX

59
(FIVE YEARS 11)

2022 ◽  
Vol 119 (3) ◽  
pp. e2105171119
Author(s):  
Raghuvaran Shanmugam ◽  
Mert Burak Ozturk ◽  
Joo-Leng Low ◽  
Semih Can Akincilar ◽  
Joelle Yi Heng Chua ◽  
...  

Cancer-specific hTERT promoter mutations reported in 19% of cancers result in enhanced telomerase activity. Understanding the distinctions between transcriptional regulation of wild-type (WT) and mutant (Mut) hTERT promoters may open up avenues for development of inhibitors which specially block hTERT expression in cancer cells. To comprehensively identify physiological regulators of WT- or Mut-hTERT promoters, we generated several isogenic reporter cells driven by endogenous hTERT loci. Genome-wide CRISPR-Cas9 and small interfering RNA screens using these isogenic reporter lines identified specific regulators of Mut-hTERT promoters. We validate and characterize one of these hits, namely, MED12, a kinase subunit of mediator complex. We demonstrate that MED12 specifically drives expression of hTERT from the Mut-hTERT promoter by mediating long-range chromatin interaction between the proximal Mut-hTERT promoter and T-INT1 distal regulatory region 260 kb upstream. Several hits identified in our screens could serve as potential therapeutic targets, inhibition of which may specifically block Mut-hTERT promoter driven telomerase reactivation in cancers.


2022 ◽  
Vol 35 ◽  
pp. 74-78
Author(s):  
Alexander S. Taylor ◽  
Brandon Newell ◽  
Arul M. Chinnaiyan ◽  
Khaled S. Hafez ◽  
Alon Z. Weizer ◽  
...  

In Vivo ◽  
2021 ◽  
Vol 36 (1) ◽  
pp. 94-102
Author(s):  
MASAHIRO HIRATA ◽  
KOJI FUJITA ◽  
SHINTARO FUJIHARA ◽  
TAKAAKI MIZUO ◽  
RYOTA NAKABAYASHI ◽  
...  

2021 ◽  
Author(s):  
Zachary L Skidmore ◽  
Jason Kunisaki ◽  
Yiing Lin ◽  
Kelsy C Cotto ◽  
Erica K Barnell ◽  
...  

Background: Liver cancer is the second leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) risk factors include chronic hepatitis, cirrhosis, and alcohol abuse, whereby tumorigenesis is induced through inflammation and subsequent fibrotic response. However, a subset of HCC arises in non-cirrhotic livers. We characterized the genomic and transcriptomic landscape of non-cirrhotic HCC to identify features underlying the disease's development and progression. Methods: Whole genome and transcriptome sequencing was performed on 30 surgically resectable tumors comprised of primarily of non-cirrhotic HCC and adjacent normal tissue. Using somatic variants, capture reagents were created and employed on an additional 87 cases of mixed cirrhotic/non-cirrhotic HCC. Cases were analyzed to identify viral integrations, single nucleotide variants (SNVs), insertions and deletions (INDELS), copy number variants, loss of heterozygosity, gene fusions, structural variants, and differential gene expression. Results: We detected 3,750 SNVs/INDELS and extensive CNVs and expression changes. Recurrent TERT promoter mutations occurred in >52% of non-cirrhotic discovery samples. Frequently mutated genes included TP53, CTNNB1, and APOB. Cytochrome P450 mediated metabolism was significantly downregulated. Structural variants were observed at MACROD2, WDPCP, and NCKAP5 in >20% of samples. Furthermore, NR1H4 fusions involving gene partners EWSR1, GNPTAB, and FNIP1 were detected and validated in 2 non-cirrhotic samples. Conclusion: Genomic analysis can elucidate mechanisms that may contribute to non-cirrhotic HCC tumorigenesis. The comparable mutational landscape between cirrhotic and non-cirrhotic HCC supports previous work suggesting a convergence at the genomic level during disease progression. It is therefore possible genomic-based treatments can be applied to both HCC subtypes with progressed disease.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Valeria Barresi ◽  
Michele Simbolo ◽  
Andrea Mafficini ◽  
Maurizio Martini ◽  
Martina Calicchia ◽  
...  

AbstractGiant cell glioblastoma (GC-GBM) is a rare variant of IDH-wt GBM histologically characterized by the presence of numerous multinucleated giant cells and molecularly considered a hybrid between IDH-wt and IDH-mutant GBM. The lack of an objective definition, specifying the percentage of giant cells required for this diagnosis, may account for the absence of a definite molecular profile of this variant. This study aimed to clarify the molecular landscape of GC-GBM, exploring the mutations and copy number variations of 458 cancer-related genes, tumor mutational burden (TMB), and microsatellite instability (MSI) in 39 GBMs dichotomized into having 30–49% (15 cases) or ≥ 50% (24 cases) GCs. The type and prevalence of the genetic alterations in this series was not associated with the GCs content (< 50% or ≥ 50%). Most cases (82% and 51.2%) had impairment in TP53/MDM2 and PTEN/PI3K pathways, but a high proportion also featured TERT promoter mutations (61.5%) and RB1 (25.6%) or NF1 (25.6%) alterations. EGFR amplification was detected in 18% cases in association with a shorter overall survival (P = 0.004). Sixteen (41%) cases had a TMB > 10 mut/Mb, including two (5%) that harbored MSI and one with a POLE mutation. The frequency of RB1 and NF1 alterations and TMB counts were significantly higher compared to 567 IDH wild type (P < 0.0001; P = 0.0003; P < 0.0001) and 26 IDH-mutant (P < 0.0001; P = 0.0227; P < 0.0001) GBMs in the TCGA PanCancer Atlas cohort. These findings demonstrate that the molecular landscape of GBMs with at least 30% giant cells is dominated by the impairment of TP53/MDM2 and PTEN/PI3K pathways, and additionally characterized by frequent RB1 alterations and hypermutation and by EGFR amplification in more aggressive cases. The high frequency of hypermutated cases suggests that GC-GBMs might be candidates for immune check-point inhibitors clinical trials.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1773
Author(s):  
François Hafezi ◽  
Lisa Jaxel ◽  
Morgane Lemaire ◽  
Jonathan D. Turner ◽  
Danielle Perez-Bercoff

Background: Chief among mechanisms of telomerase reverse transcriptase (TERT) reactivation is the appearance of mutations in the TERT promoter. The two main TERT promoter mutations are C>T transitions located −146C>T and −124C>T upstream from the translational start site. They generate a novel Ets/TCF binding site. Both mutations are mutually exclusive and −124C>T is strikingly overrepresented in most cancers. We investigated whether this mutational bias and mutual exclusion could be due to transcriptional constraints. Methods: We compared sense and antisense transcription of a panel of TERT promoter-luciferase vectors harboring the −124C>T and -146C>T mutations alone or together. lncRNA TAPAS levels were measured by RT-PCR. Results: Both mutations generally increased TERT transcription by 2–4-fold regardless of upstream and downstream regulatory elements. The double mutant increased transcription in an additive fashion, arguing against a direct transcriptional constraint. The −146C>T mutation, alone or in combination with −124C>T, also unleashed antisense transcription. In line with this finding, lncRNA TAPAS was higher in cells with mutated TERT promoter (T98G and U87) than in cells with wild-type promoter, suggesting that lncRNA TAPAS may balance the effect of TERT promoter mutations. Conclusions: −146C>T and −124C>T TERT promoter mutations increase TERT sense and antisense transcription, and the double mutant features higher transcription levels. Increased antisense transcription may contain TERT expression within sustainable levels.


2021 ◽  
Author(s):  
Derek Vanian Conkle-Gutierrez ◽  
Calvin Kim ◽  
Sarah M Ramirez-Busby ◽  
Samuel J Modlin ◽  
Mikael Mansjö ◽  
...  

Point mutations in the rrs gene and eis promoter are known to confer resistance to second-line injectable drugs (SLIDs) amikacin (AMK), capreomycin (CAP), and kanamycin (KAN). While mutations in these canonical genes confer a majority of SLID-resistance, alternative mechanisms of resistance are not uncommon and threaten effective treatment decisions when using conventional molecular diagnostics. In total, 1184 clinical M. tuberculosis isolates from 7 countries were studied for genomic markers associated with phenotypic resistance. The markers rrs:A1401G and rrs:G1484T were associated with resistance to all three SLIDs, and three known markers in the eis promoter (eis:G-10A, eis:C-12T, and eis:C-14T) were similarly associated with kanamycin resistance (KAN-R). Among 325, 324, 270 AMK-R, CAP-R, and KAN-R isolates, 264 (81.2%), 250 (77.2%), and 249 (92.3%) harbored canonical mutations, respectively. Thirteen isolates harbored more than one canonical mutation. Canonical mutations did not account for 111 of the phenotypically resistant isolates. A gene-wise method identified three genes and promoters with mutations that, on aggregate, associated with unexplained resistance to at least one SLID. Our analysis associated whiB7 promoter mutations with KAN resistance, supporting clinical relevance for the previously demonstrated role of whiB7 overexpression in KAN resistance. We also provide evidence for the novel association of ppe51 (a gene previously associated with various antimicrobial compounds) with AMK resistance, and for the novel association of thrB with AMK and CAP resistance. The use of gene-wise association can provide additional insight, and therefore is recommended for identification of rare mechanisms of resistance when individual mutations carry insufficient statistical power.


Author(s):  
Christian Mirian ◽  
Kathrine Grell ◽  
Tareq A. Juratli ◽  
Felix Sahm ◽  
Sabine Spiegl‐Kreinecker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document