Translocation of Escherichia coli from the gastrointestinal tract to the mesenteric lymph nodes in gnotobiotic mice receiving Escherichia coli vaccines before colonization

1980 ◽  
Vol 30 (3) ◽  
pp. 894-898
Author(s):  
R D Berg ◽  
A W Garlington

Germfree mice were immunized orally or intraperitoneally for 6 weeks with heat-killed vaccines of indigenous Escherichia coli or nonindigenous E. coli O 127: B8 before colonization with these strains. The mice exhibited increases in specific serum antibodies and intestinal immunoglobulin A reacting with the E coli antigens. Prior immunization did not reduce the gastrointestinal population levels of the E. coli strains attained 3 and 7 days after colonization. Neither oral nor intraperitoneal immunization with the E. coli strains before colonization decreased the incidence of bacterial translocation to the mesenteric lymph nodes or reduced the number of viable E. coli cells per mesenteric lymph node. There also was no relation in individual mice between serum antibody titers and the numbers of viable E. coli cells translocating to the mesenteric lymph nodes. Thus, prior vaccination with E. coli in this study did not decrease the incidence or reduce the numbers of viable E. coli translocating to the mesenteric lymph nodes in gnotobiotic mice monoassociated with E. coli.

1980 ◽  
Vol 29 (3) ◽  
pp. 1073-1081
Author(s):  
Rodney D. Berg

Escherichia coli C25 maintained population levels of 10 9 to 10 10 per g of cecum and translocated to 100% of the middle mesenteric lymph nodes in gnotobiotic mice monoassociated with E. coli C25. Intragastric inoculation of these mice with the cecal contents from specific-pathogen-free mice reduced the population levels of E. coli C25 to 10 6 per g of cecum and completely inhibited translocation to the mesenteric lymph nodes. Intragastric inoculation with heat-treated, Formalintreated, or filtered cecal contents did not reduce the population levels of E. coli C25 or reduce the incidence of translocation of E. coli C25 to the mesenteric lymph nodes. Thus, viable bacteria apparently are required in the cecal contents inocula to reduce the population levels and the incidence of translocation of E. coli C25. Treatment with streptomycin plus bacitracin decreased the anaerobic bacterial levels in these gnotobiotic mice, allowing increased population levels of E. coli C25 and increased translocation to the mesenteric lymph nodes. E. coli C25 also translocated to the mesenteric lymph nodes of specific-pathogen-free mice treated with streptomycin and bacitracin before colonization with E. coli C25. The high cecal population levels of E. coli C25 in these antibiotic-decontaminated specific-pathogen-free mice apparently overwhelm any barrier to translocation exerted by the immunologically developed lamina propria of the specific-pathogen-free mice. Inoculation of gnotobiotic mice with a cecal flora also reduced the population levels of an indigenous strain of E. coli with a concomitant inhibition of translocation of the indigenous E. coli to the mesenteric lymph nodes. Thus, bacterial antagonism of the gastrointestinal population levels of certain indigenous bacteria, such as E. coli , by other members of the normal bacterial flora appears to be an important defense mechanism confining bacteria to the gastrointestinal tract.


2019 ◽  
Vol 7 (4) ◽  
Author(s):  
Silvia Bonardi ◽  
Clotilde Silvia Cabassi ◽  
Simona Longhi ◽  
Federico Pia ◽  
Margherita Corradi ◽  
...  

Wild boars (Sus scrofa) are increasing in several European countries, including Italy. In areas with intensive animal farming, like the Italian Emilia-Romagna region, they are likely to be exposed to antimicrobialresistant (AMR) bacteria of livestock origin. In 2017-2018, 108 mesenteric lymph nodes samples were collected from 108 wild boars hunted in Parma province, Emilia-Romagna region, to be tested for ESBL- and carbapenemase-producing Escherichia coli. One isolate (WB-21L) out of 108 (0.9%) was phenotypically confirmed as ESBLproducing E. coli. The strain WB-21L was tested by PCR for the genes blaSHV, blaCTX-M, blaTEM, blaAmpC, blaKPC, blaNDM, blaVIM, blaIMP, blaOXA-48, blaSPM, blaBIC, blaSIM, blaDIM, blaGIM, blaAIM, resulting positive for TEM β-lactamase. Resistance to ampicillin, amoxicillin/clavulanic acid, streptomycin, sulfasomidine, tetracycline and trimethoprim confirmed the multi-resistance nature of the strain WB-21L. Nine E. coli isolates showed resistance to meropenem by the Kirby Bauer test but none of them showed Meropenem MIC values indicative of resistance. In conclusion, the present study shows the presence of ESBL E. coli in wild boars and the possible risk of transfer to game meat handlers and consumers. Future studies are needed to better evaluate the sources of AMR bacteria in wildlife.


2004 ◽  
Vol 78 (7) ◽  
pp. 3352-3360 ◽  
Author(s):  
Alicia R. Mathers ◽  
Christopher F. Cuff

ABSTRACT Mucosal and parenteral immunizations elicit qualitatively distinct immune responses, and there is evidence that mucosal immunization can skew the balance of T helper 1 and T helper 2 responses. However, a clear picture of the effect of the route of infection on the balance of the T helper responses has not yet emerged. Our laboratory previously demonstrated that oral reovirus infection elicits specific serum immunoglobulin G2a (IgG2a), while parenteral reovirus infection elicits the mixed production of specific serum IgG2a and IgG1 in mice of the H-2d haplotype. Knowing that IgG2a production is indicative of a T helper 1 response and IgG1 production is indicative of a T helper 2 response, we hypothesized that the route of infection influences the development of T helper 1 and T helper 2 responses. Using quantitative reverse transcription-PCR, we found that mRNA for the T helper 1 cytokines gamma interferon and interleukin-12 (IL-12) were expressed in draining lymphoid tissues following both oral and parenteral infections. However, we observed that mRNA for the T helper 2 cytokine IL-10 was suppressed in the Peyer's patches and mesenteric lymph nodes and IL-4 mRNA was suppressed in the mesenteric lymph nodes compared to noninfected controls, following oral infection. Using recombinant cytokines and cytokine knockout mice, we confirmed that IL-4 plays a major role in mediating the route-of-infection-dependent differences in serum IgG subclass responses. Therefore, the route of infection needs to be taken into consideration when developing vaccines and adjuvant therapies.


2012 ◽  
Vol 56 (1) ◽  
pp. 37-42
Author(s):  
Ewa Długosz ◽  
Jarosław Cendrowski ◽  
Piotr Bąska ◽  
Anna Siwińska ◽  
Halina Wędrychowicz ◽  
...  

Abstract The aim of the study was cloning and analysis of the entire coding sequence of hamster IL-2 by the method of RACE-PCR, its expression in Escherichia coli cells, and production of IL-2 specific antibodies. These antibodies were used to determine in vitro IL-2 production by cells derived from the spleen and mesenteric lymph nodes of Ancylostoma ceylanicum infected hamsters. The highest concentration of IL-2 was noted in supernatants from cell cultures coming from the oldest, most resistant hamsters.


Immunology ◽  
2010 ◽  
Vol 129 (3) ◽  
pp. 427-436 ◽  
Author(s):  
Anika Hahn ◽  
Nadja Thiessen ◽  
Reinhard Pabst ◽  
Manuela Buettner ◽  
Ulrike Bode

2007 ◽  
Vol 70 (6) ◽  
pp. 1493-1497 ◽  
Author(s):  
SILVIA BONARDI ◽  
EMANUELA FONI ◽  
CHIARA CHIAPPONI ◽  
ALESSANDRA SALSI ◽  
FRANCO BRINDANI

Verocytotoxin-producing Escherichia coli (VTEC) has emerged as a foodborne pathogen that can cause severe and potentially fatal illnesses, such as hemorrhagic colitis or the hemolytic uremic syndrome. In this study, 182 cattle at slaughter (119 dairy cows and 63 feedlot cattle) were randomly selected and tested for the presence of VTEC serogroups O26, O103, O111, O145, and O157 in their cecal content and lymphatic tissue (tonsils or mesenteric lymph nodes). A total of 364 samples were evaluated with an immunomagnetic separation technique followed by slide agglutination. Presumptive VTEC O26, O103, O111, O145, and O157 isolates were tested by Vero cell assay for verocytotoxin production and by multiplex PCR assay for the detection of vtx1, vtx2, eae, and E-hlyA genes. VTEC O157 was detected in 6 (3.3%) of 182 animals, and VTEC O26 was detected in 1 (0.5%) of 182 animals. No VTEC O103, VTEC O111, or VTEC O145 isolates were found in cattle feces, but one VTEC O91:H− vtx2+, eae−, E-hlyA+ strain nonspecifically cross-reacted with the VTEC O103 type. The prevalence of VTEC O157 in the lymphatic tissue of cattle was 1.1% in both tonsils (1 of 93 samples) and mesenteric lymph nodes (1 of 89 samples). Lymphatic tissue contamination was observed only in VTEC O157 intestinal carriers; two (33.3%) of six fecal carriers were simultaneously VTEC O157 lymphatic carriers. This finding suggests that VTEC O157 contamination of meat does not necessarily come from feces or the environment. No other VTEC serogroups were detected in the lymphatic tissue of slaughtered cattle.


1998 ◽  
Vol 17 (4) ◽  
pp. 185-190 ◽  
Author(s):  
C.-G. Nettelbladt ◽  
M. Katouli ◽  
T. Bark ◽  
T. Svenberg ◽  
R. Möllby ◽  
...  

Gut ◽  
1999 ◽  
Vol 45 (2) ◽  
pp. 223-228 ◽  
Author(s):  
J MacFie ◽  
C O’Boyle ◽  
C J Mitchell ◽  
P M Buckley ◽  
D Johnstone ◽  
...  

AIMSTo investigate the “gut origin of sepsis” hypothesis.METHODSProspective controlled study of 279 surgical patients in which cultures of nasogastric aspirates were compared with those obtained from mesenteric lymph nodes taken at laparotomy and the organisms cultured from subsequent septic complications. Bacterial translocation was confirmed if positive cultures were obtained from mesenteric lymph nodes. Postoperative sepsis was defined as any positive culture in the postoperative period. Bacterial species obtained in gastric microflora, mesenteric lymph nodes, and postoperative septic complications were compared.RESULTSOnly 85/279 patients (31%) had a sterile nasogastric aspirate; the most frequently identified organism was Candida spp. (54%) and the most common enteric organism cultured was E coli (20%). Multiple organisms were isolated in 39% and occurred more frequently in patients aged over 70 years, those undergoing non-elective surgery, and in those requiring proximal gastrointestinal surgery. Postoperative sepsis was more common in these patients. Bacterial translocation occurred in 21% and was significantly more frequent in those with multiple organisms in their nasogastric aspirates. E coli was the commonest organism isolated from the lymph node specimens (48%) and septic foci (53%). Fungal translocation did not occur. An identical genus was identified in the nasogastric aspirate and the septic focus in 30% of patients, in the nasogastric aspirate and the lymph node in 31%, and in the lymph node and a postoperative septic focus in 45%.CONCLUSIONSProximal gut colonisation is associated with both increased bacterial translocation and septic morbidity. The commonality of organisms identified supports the gut origin of sepsis hypothesis.


1987 ◽  
Vol 55 (11) ◽  
pp. 2834-2837 ◽  
Author(s):  
C L Wells ◽  
M A Maddaus ◽  
R P Jechorek ◽  
R L Simmons

Sign in / Sign up

Export Citation Format

Share Document