scholarly journals Mucosal Immunogenicity of a Holotoxin-Like Molecule Containing the Serine-Rich Entamoeba histolytica Protein (SREHP) Fused to the A2 Domain of Cholera Toxin

1998 ◽  
Vol 66 (2) ◽  
pp. 462-468 ◽  
Author(s):  
Faisal Sultan ◽  
Ling-ling Jin ◽  
Michael G. Jobling ◽  
Randall K. Holmes ◽  
Samuel L. Stanley

ABSTRACT One strategy for the induction of mucosal immune responses by oral immunization is to administer the antigen in conjunction with cholera toxin. Cholera toxin consists of one A polypeptide (CTA) which is noncovalently linked to five B subunits (CTB) via the A2 portion of the A subunit (CTA2). Coupling of antigens to the nontoxic B subunit of cholera toxin may improve the immunogenicity of antigens by targeting them to GM1 ganglioside on M cells and intestinal epithelial cells. Here, we describe the construction of a translational fusion protein containing the serine-rich Entamoeba histolytica protein (SREHP), a protective amebic antigen, fused to a maltose binding protein (MBP) and to CTA2. When coexpressed in Escherichia coliwith the CTB gene, these proteins assembled into a holotoxin-like chimera containing MBP-SREHP-CTA2 and CTB. This holotoxin-like chimera (SREHP-H) inhibited the binding of cholera toxin to GM1 ganglioside. Oral vaccination of mice with SREHP-H induced mucosal immunoglobulin A (IgA) and serum IgG antiamebic antibodies and low levels of mucosal anti-CTB antibodies. Our studies confirm that the genetic coupling of antigens to CTA2 and their coexpression in E. coli can produce holotoxin-like molecules that are mucosally immunogenic without the requirement for supplemental cholera toxin, and they establish the SREHP-H protein as a candidate for evaluation as a vaccine to prevent amebiasis.

1998 ◽  
Vol 66 (9) ◽  
pp. 4299-4304 ◽  
Author(s):  
Evlambia Harokopakis ◽  
George Hajishengallis ◽  
Suzanne M. Michalek

ABSTRACT Liposomes appear to be a promising oral antigen delivery system for the development of vaccines against infectious diseases, although their uptake efficiency by Peyer’s patches in the gut and the subsequent induction of mucosal immunoglobulin A (IgA) responses remain a major concern. Aiming at targeted delivery of liposomal immunogens, we have previously reported the conjugation via a thioether bond of the GM1 ganglioside-binding subunit of cholera toxin (CTB) to the liposomal outer surface. In the present study, we have investigated the effectiveness of liposomes containing the saliva-binding region (SBR) of Streptococcus mutans AgI/II adhesin and possessing surface-linked recombinant CTB (rCTB) in generating mucosal (salivary, vaginal, and intestinal) IgA as well as serum IgG responses to the parent molecule, AgI/II. Responses in mice given a single oral dose of the rCTB-conjugated liposomes were compared to those in mice given one of the following unconjugated liposome preparations: (i) empty liposomes, (ii) liposomes containing SBR, (iii) liposomes containing SBR and coadministered with rCTB, and (iv) liposomes containing SBR plus rCTB. Three weeks after the primary immunization, significantly higher levels of mucosal IgA and serum IgG antibodies to AgI/II were observed in the rCTB-conjugated group than in mice given the unconjugated liposome preparations, although the latter mice received a booster dose at week 9. The antibody responses in mice immunized with rCTB-conjugated liposomes persisted at high levels for at least 6 months, at which time (week 26) a recall immunization significantly augmented the responses. In general, mice given unconjugated liposome preparations required one or two booster immunizations to develop a substantial anti-AgI/II antibody response, which was more prominent in the group given coencapsulated SBR and rCTB. These data indicate that conjugation of rCTB to liposomes greatly enhances their effectiveness as an antigen delivery system. This oral immunization strategy should be applicable for the development of vaccines against oral, intestinal, or sexually transmitted diseases.


1994 ◽  
Vol 180 (6) ◽  
pp. 2147-2153 ◽  
Author(s):  
M Pizza ◽  
M R Fontana ◽  
M M Giuliani ◽  
M Domenighini ◽  
C Magagnoli ◽  
...  

Escherichia coli enterotoxin (LT) and the homologous cholera toxin (CT) are A-B toxins that cause travelers' diarrhea and cholera, respectively. So far, experimental live and killed vaccines against these diseases have been developed using only the nontoxic B portion of these toxins. The enzymatically active A subunit has not been used because it is responsible for the toxicity and it is reported to induce a negligible titer of toxin neutralizing antibodies. We used site-directed mutagenesis to inactivate the ADP-ribosyltransferase activity of the A subunit and obtained nontoxic derivatives of LT that elicited a good titer of neutralizing antibodies recognizing the A subunit. These LT mutants and equivalent mutants of CT may be used to improve live and killed vaccines against cholera and enterotoxinogenic E. coli.


Glycobiology ◽  
2016 ◽  
Vol 26 (5) ◽  
pp. 540-540 ◽  
Author(s):  
Robert K Yu ◽  
Seigo Usuki ◽  
Yutaka Itokazu ◽  
Han-Chung Wu

2016 ◽  
Vol 473 (21) ◽  
pp. 3923-3936 ◽  
Author(s):  
Dani Zalem ◽  
João P. Ribeiro ◽  
Annabelle Varrot ◽  
Michael Lebens ◽  
Anne Imberty ◽  
...  

The structurally related AB5-type heat-labile enterotoxins of Escherichia coli and Vibrio cholerae are classified into two major types. The type I group includes cholera toxin (CT) and E. coli LT-I, whereas the type II subfamily comprises LT-IIa, LT-IIb and LT-IIc. The carbohydrate-binding specificities of LT-IIa, LT-IIb and LT-IIc are distinctive from those of cholera toxin and E. coli LT-I. Whereas CT and LT-I bind primarily to the GM1 ganglioside, LT-IIa binds to gangliosides GD1a, GD1b and GM1, LT-IIb binds to the GD1a and GT1b gangliosides, and LT-IIc binds to GM1, GM2, GM3 and GD1a. These previous studies of the binding properties of type II B-subunits have been focused on ganglio core chain gangliosides. To further define the carbohydrate binding specificity of LT-IIb B-subunits, we have investigated its binding to a collection of gangliosides and non-acid glycosphingolipids with different core chains. A high-affinity binding of LT-IIb B-subunits to gangliosides with a neolacto core chain, such as Neu5Gcα3- and Neu5Acα3-neolactohexaosylceramide, and Neu5Gcα3- and Neu5Acα3-neolactooctaosylceramide was detected. An LT-IIb-binding ganglioside was isolated from human small intestine and characterized as Neu5Acα3-neolactohexaosylceramide. The crystal structure of the B-subunit of LT-IIb with the pentasaccharide moiety of Neu5Acα3-neolactotetraosylceramide (Neu5Ac-nLT: Neu5Acα3Galβ4GlcNAcβ3Galβ4Glc) was determined providing the first information for a sialic-binding site in this subfamily, with clear differences from that of CT and LT-I.


2001 ◽  
Vol 98 (15) ◽  
pp. 8536-8541 ◽  
Author(s):  
A. T. Aman ◽  
S. Fraser ◽  
E. A. Merritt ◽  
C. Rodigherio ◽  
M. Kenny ◽  
...  

2001 ◽  
Vol 69 (3) ◽  
pp. 1528-1535 ◽  
Author(s):  
Christal C. Bowman ◽  
John D. Clements

ABSTRACT Two bacterial products that have been demonstrated to function as mucosal adjuvants are cholera toxin (CT), produced by various strains of Vibrio cholerae, and the heat-labile enterotoxin (LT) produced by some enterotoxigenic strains of Escherichia coli. Although LT and CT have many features in common, they are clearly distinct molecules with biochemical and immunologic differences which make them unique. The goal of this study was to determine the basis for these biological differences by constructing and characterizing chimeric CT-LT molecules. Toxin gene fragments were subcloned to create two constructs, each expressing the enzymatically active A subunit of one toxin and the receptor binding B subunit of the other toxin. These hybrid toxins were purified, and the composition and assembly of CT A subunit (CT-A)-LT B subunit (LT-B) and LT A subunit (LT-A)-CT B subunit (CT-B) were confirmed. Hybrids were evaluated for enzymatic activity, as measured by the accumulation of cyclic AMP in Caco-2 cells, and the enterotoxicity of each toxin was assessed in a patent-mouse assay. The results demonstrated that LT-A–CT-B induces the accumulation of lower levels of cyclic AMP and has less enterotoxicity than either wild-type toxin or the other hybrid. Nonetheless, this hybrid retains adjuvant activity equivalent to or greater than that of either wild-type toxin or the other hybrid when used in conjunction with tetanus toxoid for intranasal immunization of BALB/c mice. Importantly, the ability of LT to induce a type 1 cytokine response was found to be a function of LT-A. Specifically, LT-A–CT-B was able to augment the levels of antigen-specific gamma interferon (IFN-γ) and interleukin 5 to levels comparable to those achieved with native LT, while CT-A–LT-B and native CT both produced lower levels of antigen-specific IFN-γ. Thus, these toxin hybrids possess unique biological characteristics and provide information about the basis for differences in the biological activities observed for CT and LT.


2010 ◽  
Vol 126 (3) ◽  
pp. 359-365 ◽  
Author(s):  
J.C. Carrero ◽  
A. Contreras-Rojas ◽  
B. Sánchez-Hernández ◽  
P. Petrosyan ◽  
R.J. Bobes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document