scholarly journals Interleukin-4-Independent Acceleration of Cutaneous Leishmaniasis in Susceptible BALB/c Mice following Treatment with Anti-CTLA4 Antibody

1999 ◽  
Vol 67 (12) ◽  
pp. 6454-6460 ◽  
Author(s):  
Frederick P. Heinzel ◽  
Richard A. Maier

ABSTRACT BALB/c mice are susceptible to progressive infection withLeishmania major due to the preferential development of CD4+ T cells that secrete Th2 cytokines. Although Th2 cell development and susceptibility are disrupted by blockade of CD86 function early in infection, CD28-deficient BALB/c mice remain susceptible to leishmaniasis. We therefore examined whether the alternative CD86 ligand, CTLA4, contributes to the expression of susceptibility. BALB/c mice treated for 2 weeks of infection with anti-CTLA4 monoclonal antibody developed more rapidly progressive disease than sham-treated mice, whereas normally resistant C57BL/6 mice were unaffected. The draining lymph node cells of anti-CTLA4-treated BALB/c mice produced up to sixfold more interleukin-4 (IL-4) and IL-13 than control mice in the first 2 weeks of infection, but IFN-γ synthesis was reciprocally decreased. Anti-CTLA4 treatment of BALB/c mice pretreated with neutralizing anti-IL-4 antibody or genetically deficient in IL-4 also caused significant worsening of leishmaniasis. Exacerbation in IL-4 KO mice was associated with increased IL-13 and decreased gamma interferon (IFN-γ) and inducible nitric oxide synthase (iNOS) mRNA expression in vivo. These data indicate that anti-CTLA4 antibody induced earlier and more-polarized Th2 responses in susceptible BALB/c mice infected with L. major. The mechanism of disease worsening was partially IL-4 independent, indicating that increased IL-13 and/or decreased IFN-γ production may have disrupted nitric oxide-based microbicidal responses. We conclude that CTLA4 significantly modulates Th2 development in murine leishmaniasis and that the Th2-polarizing effects of anti-CTLA4 treatment result in IL-4-independent exacerbation of disease.

2001 ◽  
Vol 193 (6) ◽  
pp. 777-784 ◽  
Author(s):  
Virginia Iniesta ◽  
L. Carlos Gómez-Nieto ◽  
Inés Corraliza

Polyamine synthesis from l-ornithine is essential for Leishmania growth. We have investigated the dependence of Leishmania infection on arginase, which generates l-ornithine, in macrophages from BALB/c, C57BL/6, and nitric oxide synthase II (NOS II)-deficient mouse strains. We have found that Nω-hydroxy-l-arginine (LOHA), a physiological inhibitor of arginase, controls cellular infection and also specifically inhibits arginase activity from Leishmania major and Leishmania infantum parasites. The effect was proportional to the course of infection, concentration dependent up to 100 μM, and achieved without an increase in nitrite levels of culture supernatants. Moreover, when the l-arginine metabolism of macrophages is diverted towards ornithine generation by interleukin 4–induced arginase I, parasite growth is promoted. This effect can be reversed by LOHA. Inhibition of NOS II by NG-methyl-l-arginine (LNMMA) restores the killing obtained in the presence of interferon (IFN)-γ plus lipolysaccharide (LPS), whereas the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5,-tetramethylimidazoline-3-oxide-1-oxyl (carboxy-PTIO) was without effect. However, exogenous l-ornithine almost completely inhibits parasite killing when added in the presence of LOHA to macrophages from NOS II–deficient mice or to BALB/c-infected cells activated with IFN-γ plus LPS. These results suggest that LOHA is an effector molecule involved in the control of Leishmania infection. In addition, macrophage arginase I induction by T helper cell type 2 cytokines could be a mechanism used by parasites to spread inside the host.


2002 ◽  
Vol 70 (8) ◽  
pp. 4638-4642 ◽  
Author(s):  
Muna Qadoumi ◽  
Inge Becker ◽  
Norbert Donhauser ◽  
Martin Röllinghoff ◽  
Christian Bogdan

ABSTRACT Cytokine-inducible (or type 2) nitric oxide synthase (iNOS) is indispensable for the resolution of Leishmania major or Leishmania donovani infections in mice. In contrast, little is known about the expression and function of iNOS in human leishmaniasis. Here, we show by immunohistological analysis of skin biopsies from Mexican patients with local (LCL) or diffuse (DCL) cutaneous leishmaniasis that the expression of iNOS was most prominent in LCL lesions with small numbers of parasites whereas lesions with a high parasite burden (LCL or DCL) contained considerably fewer iNOS-positive cells. This is the first study to suggest an antileishmanial function of iNOS in human Leishmania infections in vivo.


1994 ◽  
Vol 180 (3) ◽  
pp. 783-793 ◽  
Author(s):  
S Stenger ◽  
H Thüring ◽  
M Röllinghoff ◽  
C Bogdan

Previous studies with inhibitors of inducible nitric oxide synthase (iNOS) suggested that high-output production of nitric oxide (NO) is an important antimicrobial effector pathway in vitro and in vivo. Here, we investigated the tissue expression of iNOS in mice after infection with Leishmania major. Immunohistochemical staining with an iNOS-specific antiserum revealed that in the cutaneous lesion and draining lymph nodes (LN) of clinically resistant mice (C57BL/6), iNOS protein is found earlier during infection and in significantly higher amounts than in the nonhealing BALB/c strain. Similar differences were seen on the mRNA level as quantitated by competitive polymerase chain reaction. Anti-CD4 treatment of BALB/c mice not only induced resistance to disease, but also restored the expression of iNOS in the tissue. In situ, few or no parasites were found in those regions of the skin lesion and the draining LN which were highly positive for iNOS. By double labeling experiments, macrophages were identified as iNOS expressing cells in vivo. In the lesions of BALB/c mice, cells staining positively for transforming growth factor beta (TGF-beta), a potent inhibitor of iNOS in vitro, were strikingly more prominent than in C57BL/6, whereas no such difference was found for interleukin 4 or interferon gamma (IFN-gamma). In vitro, production of NO was approximately threefold higher in C57BL/6 than in BALB/c macrophages after stimulation with IFN-gamma. We conclude that the pronounced expression of iNOS in resistant mice is an important mechanism for the elimination of Leishmania in vivo. The relative lack of iNOS in susceptible mice might be a consequence of macrophage deactivation by TGF-beta and reduced responsiveness to IFN-gamma.


2002 ◽  
Vol 70 (1) ◽  
pp. 107-113 ◽  
Author(s):  
Hisashi Baba ◽  
Ikuo Kawamura ◽  
Chikara Kohda ◽  
Takamasa Nomura ◽  
Yutaka Ito ◽  
...  

ABSTRACT Pneumolysin (PLY), an important virulence factor of Streptococcus pneumoniae, is known to exert various effects on the host immune cells, including cytokine induction, in addition to its known cytolytic activity as a member of the thiol-activated cytolysins. It is of interest to determine whether cytolytic activity is involved in triggering the cytokine production. In this study, we constructed full-length recombinant PLY and noncytolytic truncated PLYs with C-terminal deletions to examine the response of spleen cells to these PLY preparations. When cytolytic activity was blocked by treatment with cholesterol, full-length PLY was capable of inducing gamma interferon (IFN-γ) production. Truncated PLYs that originally exhibited no cytolytic activity were also active in IFN-γ induction. Therefore, the IFN-γ-inducing ability of PLY appeared to be independent of the cytolytic activity. Furthermore, IFN-γ-inducing preparations were also capable of inducing nitric oxide synthase expression and nitric oxide (NO) production, and the addition of neutralizing antibody to IFN-γ abolished the NO production. These results clearly demonstrated that PLY is capable of inducing IFN-γ production in spleen cells by a mechanism different from pore formation and that the induced IFN-γ stimulates NO production. These findings were discussed with reference to the contribution of PLY to the virulence of S. pneumoniae in vivo.


2003 ◽  
Vol 71 (9) ◽  
pp. 5287-5295 ◽  
Author(s):  
Reza Chakour ◽  
Reto Guler ◽  
Mélanie Bugnon ◽  
Cindy Allenbach ◽  
Irène Garcia ◽  
...  

ABSTRACT Following infection with the protozoan parasite Leishmania major, C57BL/6 mice develop a small lesion that heals spontaneously. Resistance to infection is associated with the development of CD4+ Th1 cells producing gamma interferon (IFN-γ) and tumor necrosis factor (TNF), which synergize in activating macrophages to their microbicidal state. We show here that C57BL/6 mice lacking both TNF and Fas ligand (FasL) (gld TNF−/− mice) infected with L. major neither resolved their lesions nor controlled Leishmania replication despite the development of a strong Th1 response. Comparable inducible nitric oxide synthase (iNOS) activities were detected in lesions of TNF−/−, gld TNF−/−, and gld mice, but only gld and gld TNF−/− mice failed to control parasite replication. Parasite numbers were high in gld mice and even more elevated in gld TNF−/− mice, suggesting that, in addition to iNOS, the Fas/FasL pathway is required for successful control of parasite replication and that TNF contributes only a small part to this process. Furthermore, FasL was shown to synergize with IFN-γ for the induction of leishmanicidal activity within macrophages infected with L. major in vitro. Interestingly, TNF−/− mice maintained large lesion size throughout infection, despite being able to largely control parasite numbers. Thus, IFN-γ, FasL, and iNOS appear to be essential for the complete control of parasite replication, while the contribution of TNF is more important in controlling inflammation at the site of parasite inoculation.


1998 ◽  
Vol 66 (4) ◽  
pp. 1309-1316 ◽  
Author(s):  
Antoine Gross ◽  
Sandra Spiesser ◽  
Annie Terraza ◽  
Bruno Rouot ◽  
Emmanuelle Caron ◽  
...  

ABSTRACT We examined the expression and activity of inducible nitric oxide synthase (iNOS) in both gamma interferon (IFN-γ)-treated and untreated murine macrophages infected with the gram-negative bacteriumBrucella suis. The bacteria were opsonized with a mouse serum containing specific antibrucella antibodies (ops-Brucella) or with a control nonimmune serum (c-Brucella). The involvement of the produced NO in the killing of intracellular B. suis was evaluated. B. suis survived and replicated within J774A.1 cells. Opsonization with specific antibodies increased the number of phagocytized bacteria but lowered their intramacrophage development. IFN-γ enhanced the antibrucella activity of phagocytes, with this effect being greater inops-Brucella infection. Expression of iNOS, interleukin-6, and tumor necrosis factor alpha (TNF-α) mRNAs was induced in bothc-Brucella- and ops-Brucella-infected cells and was strongly potentiated by IFN-γ. In contrast to that of cytokine mRNAs, iNOS mRNA expression was independent of opsonization. Similar levels of iNOS mRNAs were expressed in IFN-γ-treated cells infected with c-Brucella or ops-Brucella; however, expression of iNOS protein and production of NO were detected only in IFN-γ-treated cells infected with ops-Brucella. These discrepencies between iNOS mRNA and protein levels were not due to differences in TNF-α production. The iNOS inhibitorNω-nitro-l-arginine methyl ester increasedB. suis multiplication specifically in IFN-γ-treated cells infected with ops-Brucella, demonstrating a microbicidal effect of the NO produced. This observation was in agreement with in vitro experiments showing that B. suiswas sensitive to NO killing. Together our data indicate that inB. suis-infected murine macrophages, the posttranscriptional regulation of iNOS necessitates an additive signal triggered by macrophage Fcγ receptors. They also support the possibility that in mice, NO favors the elimination ofBrucella, providing that IFN-γ and antibrucella antibodies are present, i.e., following expression of acquired immunity.


1995 ◽  
Vol 5 (12) ◽  
pp. 2067-2072
Author(s):  
A L Weigert ◽  
E M Higa ◽  
M Niederberger ◽  
I F McMurtry ◽  
M Raynolds ◽  
...  

Septic shock is associated with high mortality. There is in vitro evidence that the induction of nitric oxide synthase (iNOS) in vascular smooth muscle cells may be an important mediator of the systemic vasodilation and hypotension associated with sepsis. In this study, an in vivo murine model of sepsis was used to further examine this important question. Lipopolysaccharide (LPS), the major wall component of gram-negative bacteria, was administered to rats. By the use of a selective cDNA probe for iNOS, mRNA for iNOS was demonstrated in the aortas of these rats. The functional significance of this iNOS was then examined with aminoguanidine, a preferential inhibitor of iNOS. Aminoguanidine reversed the blunted phenylephrine-evoked contraction of endothelium-denuded aortic rings from LPS-treated rats or rings exposed to LPS in vitro. Aminoguanidine did not impair the relaxation of aortic rings with endothelium to acetylcholine, a known stimulator of endothelial NOS. The reversal of LPS-induced vascular hyporesponsiveness by aminoguanidine therefore strongly supports the functional importance of iNOS mRNA expression in the aorta of endotoxemic rats. Future clinical trials in treating septic shock should therefore consider the preferential inhibition of iNOS while maintaining the integrity of endothelial NOS.


Sign in / Sign up

Export Citation Format

Share Document