scholarly journals Transcriptional Regulation of β-Defensin Gene Expression in Tracheal Epithelial Cells

2000 ◽  
Vol 68 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Gill Diamond ◽  
Vicki Kaiser ◽  
Janice Rhodes ◽  
John P. Russell ◽  
Charles L. Bevins

ABSTRACT Innate immunity provides an ever-present or rapidly inducible initial defense against microbial infection. Among the effector molecules of this defense in many species are broad-spectrum antimicrobial peptides. Tracheal antimicrobial peptide (TAP) was the first discovered member of the β-defensin family of mammalian antimicrobial peptides. TAP is expressed in the ciliated epithelium of the bovine trachea, and its mRNA levels are dramatically increased upon stimulation with bacteria or bacterial lipopolysaccharide (LPS). We report here that this induction by LPS is regulated at the level of transcription. Furthermore, the transfection of reporter gene constructs into tracheal epithelial cells indicates that DNA sequences in the 5′ flanking region of the TAP gene, within 324 nucleotides of the transcription start site, are responsible in part for mediating gene induction. This region includes consensus binding sites for NF-κB and nuclear factor interleukin-6 (NF IL-6) transcription factors. Gel mobility shift assays indicate that LPS induces NF-κB binding activity in the nuclei of these cells, while NF IL-6 binding activity is constitutively present. The gene encoding human β-defensin 2, a human homologue of TAP with similar inducible expression patterns in the airway, was cloned and found to have conserved NF-κB and NF IL-6 consensus binding sites in its 5′ flanking region. Previous studies of antimicrobial peptides from insects indicated that their induction by infectious microbes and microbial products also occurs via activation of NF-κB-like and NF IL-6-like transcription factors. Together, these observations indicate that a strategy for the induction of peptide-based antimicrobial innate immunity is conserved among evolutionarily diverse organisms.

1995 ◽  
Vol 268 (3) ◽  
pp. L424-L431 ◽  
Author(s):  
H. Ninomiya ◽  
X. Y. Yu ◽  
Y. Uchida ◽  
S. Hasegawa ◽  
E. W. Spannhake

We have studied the binding of endothelin-1 (ET-1) to cultured canine tracheal epithelial cells. A single specific binding site for 125I-labeled ET-1 was identified with an apparent dissociation constant (Kd) of 0.2 nM, maximal binding sites (Bmax) of 6.7 x 10(3) sites/cell, and half-maximal inhibition (IC50) of 0.3 nM during a 2-h incubation period. The binding of 125I-ET-1 to these cells was inhibited by the presence of unlabeled ET-1, ET-2, or BQ-123, whereas ET-3 and sarafotoxin S6c did not compete for this binding site. These binding characteristics are consistent with those of the ETA receptor. At 37 degrees C, specific binding continuously increased over 18 h, while at 4 degrees C, it reached a plateau by 2 h. The increase in binding at 37 degrees C was not associated with DNA synthesis but was dependent upon protein synthesis, suggesting that epithelial binding sites were produced continuously under these incubation conditions. Our results indicate that canine tracheal epithelial cells possess specific binding sites for ET-1 with characteristics similar to those of the ETA receptor subtype. Because these cells are demonstrated to both release and bind ET-1, the results further suggest that ET-1 is involved in paracrine and/or autocrine control mechanisms in the airway epithelium.


1989 ◽  
Vol 9 (11) ◽  
pp. 4846-4851
Author(s):  
E E Floyd ◽  
A M Jetten

Squamous differentiation of rabbit tracheal epithelial cells is accompanied by an approximately 50-fold increase in the activity of type I (epidermal) transglutaminase, while the levels of type II (tissue) transglutaminase remain almost undetectable. To identify a cDNA encoding type I transglutaminase, we screened a library of cDNA clones prepared from poly(A)+ RNA isolated from squamous-differentiated rabbit tracheal epithelial cells. Four overlapping clones (represented by clone pTG-7) which span a range of 2.8 kilobases were identified; partial sequencing of pTG-7 indicated that it encodes a transglutaminaselike protein. pTG-7 hybridized to a 3.6-kilobase mRNA which is distinct from that for type II transglutaminase. pTG-7 mRNA levels were low in proliferative cells, increased dramatically in squamous-differentiated cells, and could be further enhanced by growth of the cells in high concentrations (2 mM) of calcium ions. Retinoic acid, which blocks the expression of the squamous phenotype, prevented this increase in pTG-7 mRNA levels. These changes in levels of pTG-7 mRNA parallel the changes in type I transglutaminase activity observed under similar culture conditions. These data indicate that pTG-7 encodes the mRNA for transglutaminase type I and that expression of this mRNA is negatively regulated by retinoic acid.


1989 ◽  
Vol 9 (11) ◽  
pp. 4846-4851 ◽  
Author(s):  
E E Floyd ◽  
A M Jetten

Squamous differentiation of rabbit tracheal epithelial cells is accompanied by an approximately 50-fold increase in the activity of type I (epidermal) transglutaminase, while the levels of type II (tissue) transglutaminase remain almost undetectable. To identify a cDNA encoding type I transglutaminase, we screened a library of cDNA clones prepared from poly(A)+ RNA isolated from squamous-differentiated rabbit tracheal epithelial cells. Four overlapping clones (represented by clone pTG-7) which span a range of 2.8 kilobases were identified; partial sequencing of pTG-7 indicated that it encodes a transglutaminaselike protein. pTG-7 hybridized to a 3.6-kilobase mRNA which is distinct from that for type II transglutaminase. pTG-7 mRNA levels were low in proliferative cells, increased dramatically in squamous-differentiated cells, and could be further enhanced by growth of the cells in high concentrations (2 mM) of calcium ions. Retinoic acid, which blocks the expression of the squamous phenotype, prevented this increase in pTG-7 mRNA levels. These changes in levels of pTG-7 mRNA parallel the changes in type I transglutaminase activity observed under similar culture conditions. These data indicate that pTG-7 encodes the mRNA for transglutaminase type I and that expression of this mRNA is negatively regulated by retinoic acid.


1992 ◽  
Vol 284 (1) ◽  
pp. 201-206 ◽  
Author(s):  
J M Herbert

Binding of 3H-labelled platelet-activating factor ([3H]PAF) to guinea-pig tracheal epithelial cells was time-dependent, reversible and saturable. Scatchard analysis of the saturation-binding data indicated that [3H]PAF bound to one class of specific binding sites with high affinity (KD = 4.3 +/- 0.03 nM; Bmax. = 0.172 +/- 0.02 fmol/10(5) cells; n = 3). Unlabelled PAF competitively and selectively inhibited the specific binding of [3H]PAF with 50% inhibition at 4.8 +/- 0.07 nM (n = 3). SR 27417, the first member of a newly developed PAF antagonist series, competitively displaced [3H]PAF from its binding sites on guinea-pig tracheal epithelial cells with a Ki of 100 +/- 3 pM (n = 3). Studies carried out in parallel demonstrated that SR 27417 was 40 times more potent than C16-PAF itself and more than 100-fold as active as the best synthetic PAF-receptor antagonist yet described. [3H]SR 27417 displayed high-affinity, specific, reversible as well as saturable binding to a single class of binding sites on tracheal epithelial cells (KD = 94 +/- 7 pM; Bmax. = 0.181 +/- 0.04 fmol/10(5) cells; n = 3). C16-PAF, lyso-PAF, enantio-PAF, SR 27417 and other PAF-receptor antagonists had Ki values which were nearly identical for both [3H]PAF and [3H]SR 27417, demonstrating that in guinea-pig tracheal epithelial cells they have the same binding sites. In conclusion, these data suggest that tracheal epithelial cells contain PAF-specific receptors and indicate that SR 27417 is an extremely potent PAF-receptor antagonist, as well as being a suitable radioligand for labelling PAF receptors on intact cells.


2020 ◽  
Vol 26 (29) ◽  
pp. 3601-3607 ◽  
Author(s):  
Yapeng Hou ◽  
Zhiyu Zhou ◽  
Hongfei Liu ◽  
Honglei Zhang ◽  
Yan Ding ◽  
...  

Background: Airway epithelium plays an essential role in maintaining the homeostasis and function of respiratory system as the first line of host defense. Of note, epithelial sodium channel (ENaC) is one of the victims of LPS-induced airway injury. Regarding the great promise held by mesenchymal stem cells (MSCs) for regenerative medicine in the field of airway injury and the limitations of cell-based MSCs therapy, we focused on the therapeutic effect of MSCs conditioned medium (MSCs-CM) on the ENaC activity in mouse tracheal epithelial cells. Methods: Ussing chamber apparatus was applied to record the short-circuit currents in primary cultured mouse tracheal epithelial cells, which reflects the ENaC activity. Expressions of α and γ ENaC were measured at the protein and mRNA levels by western blot and real-time PCR, respectively. The expression of with-no-lysinekinase- 4 (WNK4) and ERK1/2 were measured at protein levels, and the relationship between WNK4 and ERK1/2 was determined by WNK4 knockdown. Results: MSCs-CM restored the LPS-impaired ENaC activity, as well as enhanced the mRNA and protein expressions of ENaC in primary cultured mouse tracheal epithelial cells. Meanwhile, WNK4 and ERK1/2, both negative-regulators of ENaC, were suppressed accordingly after the administration of MSCs-CM in LPS-induced airway injury. After WNK4 gene was knocked down by siRNA, the level of ERK1/2 phosphorylation decreased. Conclusion: In light of the key role of ENaC in fluid reabsorption and the beneficial effects of MSCs-CM in the injury of airway epithelium, our results suggest that MSCs-CM is effective in alleviating LPS-induced ENaC dysfunction through WNK4-ERK1/2 pathway, which will provide a potent direction for the therapy of airway injury.


2001 ◽  
Vol 280 (3) ◽  
pp. L409-L420 ◽  
Author(s):  
Tomoko Suzuki ◽  
Mutsuo Yamaya ◽  
Masahito Kamanaka ◽  
Yu X. Jia ◽  
Katsutoshi Nakayama ◽  
...  

To examine the role of the low-density lipoprotein (LDL) receptor on minor group human rhinovirus (RV) infection, primary cultures of human tracheal epithelial cells were infected with a minor group (RV2) or a major group (RV14) RV. Viral infection was confirmed by showing with PCR that viral titers in supernatants and lysates from infected cells increased with time. RV2 and RV14 increased expression of mRNA and protein of the LDL receptor on the cells and the cytokine production. RV2 induced activation of transcription factors SP1 and nuclear factor-κB (NF-κB). An antibody to the LDL receptor inhibited RV2 infection and RV2-induced cytokine production without an effect on RV14 infection and RV14-induced cytokine production. These findings imply that RV2 upregulates LDL receptor expression on airway epithelial cells, thereby increasing susceptibility to minor group RV infection. LDL receptor expression and cytokine production may be mediated, in part, via activation of transcription factors by RV2. These events may be important in airway inflammation after minor group RV infection in asthma.


1991 ◽  
Vol 261 (2) ◽  
pp. L188-L194 ◽  
Author(s):  
P. I. Plews ◽  
Z. A. Abdel-Malek ◽  
C. A. Doupnik ◽  
G. D. Leikauf

The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document