scholarly journals Interleukin-18 (IL-18) Enhances Innate IL-12-Mediated Resistance to Toxoplasma gondii

2000 ◽  
Vol 68 (12) ◽  
pp. 6932-6938 ◽  
Author(s):  
Guifang Cai ◽  
Robert Kastelein ◽  
Christopher A. Hunter

ABSTRACT Innate resistance to Toxoplasma gondii is dependent on the ability of interleukin-12 (IL-12) to stimulate natural killer (NK) cell production of gamma interferon (IFN-γ). Since IL-18 is a potent enhancer of IL-12-induced production of IFN-γ by NK cells, SCID mice (which lack an adaptive immune response) were used to assess the role of IL-18 in innate resistance to T. gondii. Administration of anti-IL-18 to SCID mice infected with T. gondii resulted in an early reduction in serum levels of IFN-γ but did not significantly decrease resistance to this infection. In contrast, administration of exogenous IL-18 to infected SCID mice resulted in increased production of IFN-γ, reduced parasite burden, and a delay in time to death. The protective effects of IL-18 treatment correlated with increased NK cell numbers and cytotoxic activity at the local site of administration and with elevated levels of inducible nitrous oxide synthose in the spleens of treated mice. In addition, in vivo depletion studies demonstrated that the ability of exogenous IL-18 to enhance resistance to T. gondii was dependent on IL-12, IFN-γ, and NK cells. Together, these studies demonstrate that although endogenous IL-18 appears to have a limited role in innate resistance to T. gondii, treatment with IL-18 can augment NK cell-mediated immunity to this pathogen.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Joseph T Clark ◽  
David A Christian ◽  
Jodi A Gullicksrud ◽  
Joseph A Perry ◽  
Jeongho Park ◽  
...  

IL-33 is an alarmin required for resistance to the parasite Toxoplasma gondii, but its role in innate resistance to this organism is unclear. Infection with T. gondii promotes increased stromal cell expression of IL-33 and levels of parasite replication correlate with release of IL-33 in affected tissues. In response to infection, a subset of innate lymphoid cells (ILC) emerges composed of IL-33R+ NK cells and ILC1s. In Rag1-/- mice, where NK cells and ILC1 production of IFN-g mediates innate resistance to T. gondii, the loss of the IL-33R resulted in reduced ILC responses and increased parasite replication. Furthermore, administration of IL-33 to Rag1-/- mice resulted in a marked decrease in parasite burden, increased production of IFN-g and the recruitment and expansion of inflammatory monocytes associated with parasite control. These protective effects of exogenous IL-33 were dependent on endogenous IL-12p40 and the ability of IL-33 to enhance ILC production of IFN-g. These results highlight that IL-33 synergizes with IL-12 to promote ILC-mediated resistance to T. gondii.


2004 ◽  
Vol 72 (3) ◽  
pp. 1397-1401 ◽  
Author(s):  
Ahmed Abou-Bacar ◽  
Alexander W. Pfaff ◽  
Sophie Georges ◽  
Valérie Letscher-Bru ◽  
Denis Filisetti ◽  
...  

ABSTRACT Protective immunity in mice infected with Toxoplasma gondii is mainly mediated by NK cells, CD4 and CD8 T cells, and type 1 cytokines, such as gamma interferon (IFN-γ). To clarify the roles of NK cells and IFN-γ in protection against primary congenital toxoplasmosis, we used recombination activating gene 2 knockout (RAG-2−/−) mice, which lack T and B lymphocytes, in comparison with the wild-type BALB/c model. RAG-2−/− mice had a significantly lower risk of fetal toxoplasmosis than BALB/c mice (25 versus 63.9%; P = 0.003). This protection was associated with an increased number of maternal NK cells, IFN-γ secretion by spleen cells, and decreased parasitemia. In the RAG-2−/− mice, NK cell depletion increased both the rate of fetal infection, to 56.5% (P = 0.02), and the blood parasite burden. Conversely, in the BALB/c mice, this treatment did not modify maternofetal transmission or the blood parasite burden. Neutralization of IFN-γ in both infected RAG-2−/− and BALB/c mice decreased congenital Toxoplasma transmission, contrasting with an exacerbation of maternal infection. These data suggest that a partially protective immunity against congenital toxoplasmosis is achieved due to the increased number of NK cells in RAG-2−/− mice. However, it seems that IFN-γ enhances, directly or indirectly, the transplacental transmission.


2021 ◽  
Author(s):  
Joseph T. Clark ◽  
David A. Christian ◽  
Jodi A. Gullicksrud ◽  
Joseph A. Perry ◽  
Jeongho Park ◽  
...  

AbstractIL-33 is an alarmin required for resistance to the parasite Toxoplasma gondii, but its role in innate resistance to this infection is unclear. T. gondii infection promotes increased stromal cell expression of IL-33 and levels of parasite replication correlate with IL-33 release. In response to infection, a subset of innate lymphoid cells (ILC) emerges composed of IL-33R+ NK cells and ILC1s. In Rag-/- mice, where NK cells and ILC1 provide an innate mechanism of resistance to T. gondii, the loss of IL-33R reduced ILC responses and increased parasite replication. Furthermore, administration of IL-33 to Rag-/- mice resulted in a marked decrease in parasite burden, increased production of IFN-γ and the recruitment and expansion of inflammatory monocytes associated with parasite control. These protective effects of exogenous IL-33 were dependent on endogenous IL-12p40 and the ability of IL-33 to enhance ILC production of IFN-γ. These results highlight that IL-33 synergizes with IL-12 to promote ILC-mediated resistance to T. gondii.


1998 ◽  
Vol 11 (4) ◽  
pp. 569-588 ◽  
Author(s):  
Eric Y. Denkers ◽  
Ricardo T. Gazzinelli

SUMMARY The intracellular protozoan Toxoplasma gondii is a widespread opportunistic parasite of humans and animals. Normally, T. gondii establishes itself within brain and skeletal muscle tissues, persisting for the life of the host. Initiating and sustaining strong T-cell-mediated immunity is crucial in preventing the emergence of T. gondii as a serious pathogen. The parasite induces high levels of gamma interferon (IFN-γ) during initial infection as a result of early T-cell as well as natural killer (NK) cell activation. Induction of interleukin-12 by macrophages is a major mechanism driving early IFN-γ synthesis. The latter cytokine, in addition to promoting the differentiation of Th1 effectors, is important in macrophage activation and acquisition of microbicidal functions, such as nitric oxide release. During chronic infection, parasite-specific T lymphocytes release high levels of IFN-γ, which is required to prevent cyst reactivation. T-cell-mediated cytolytic activity against infected cells, while easily demonstrable, plays a secondary role to inflammatory cytokine production. While part of the clinical manifestations of toxoplasmosis results from direct tissue destruction by the parasite, inflammatory cytokine-mediated immunopathologic changes may also contribute to disease progression.


2020 ◽  
Vol 88 (4) ◽  
Author(s):  
Rachel S. Coombs ◽  
Matthew L. Blank ◽  
Elizabeth D. English ◽  
Yaw Adomako-Ankomah ◽  
Ifeanyi-Chukwu Samuel Urama ◽  
...  

ABSTRACT Rodents are critical for the transmission of Toxoplasma gondii to the definitive feline host via predation, and this relationship has been extensively studied as a model for immune responses to parasites. Neospora caninum is a closely related coccidian parasite of ruminants and canines but is not naturally transmitted by rodents. We compared mouse innate immune responses to N. caninum and T. gondii and found marked differences in cytokine levels and parasite growth kinetics during the first 24 h postinfection (hpi). N. caninum-infected mice produced significantly higher levels of interleukin-12 (IL-12) and interferon gamma (IFN-γ) by as early as 4 hpi, but the level of IFN-γ was significantly lower or undetectable in T. gondii-infected mice during the first 24 hpi. “Immediate” IFN-γ and IL-12p40 production was not detected in MyD88−/− mice. However, unlike IL-12p40−/− and IFN-γ−/− mice, MyD88−/− mice survived N. caninum infections at the dose used in this study. Serial measures of parasite burden showed that MyD88−/− mice were more susceptible to N. caninum infections than wild-type (WT) mice, and control of parasite burdens correlated with a pulse of serum IFN-γ at 3 to 4 days postinfection in the absence of detectable IL-12. Immediate IFN-γ was partially dependent on the T. gondii mouse profilin receptor Toll-like receptor 11 (TLR11), but the ectopic expression of N. caninum profilin in T. gondii had no impact on early IFN-γ production or parasite proliferation. Our data indicate that T. gondii is capable of evading host detection during the first hours after infection, while N. caninum is not, and this is likely due to the early MyD88-dependent recognition of ligands other than profilin.


2020 ◽  
Vol 4 (16) ◽  
pp. 3990-4006
Author(s):  
Maria A. Clavijo-Salomon ◽  
Rosalba Salcedo ◽  
Soumen Roy ◽  
Rodrigo X. das Neves ◽  
Amiran Dzutsev ◽  
...  

Abstract Adaptive immune responses are acknowledged to evolve from innate immunity. However, limited information exists regarding whether encounters between innate cells direct the generation of specialized T-cell subsets. We aim to understand how natural killer (NK) cells modulate cell-mediated immunity in humans. We found that human CD14+CD16− monocytes that differentiate into inflammatory dendritic cells (DCs) are shaped at the early stages of differentiation by cell-to-cell interactions with NK cells. Although a fraction of monocytes is eliminated by NK-cell–mediated cytotoxicity, the polarization of interferon-γ (IFN-γ) at the NKp30-stabilized synapses triggers a stable IFN-γ signature in surviving monocytes that persists after their differentiation into DCs. Notably, NK-cell–instructed DCs drive the priming of type 17 CD8+ T cells (Tc17) with the capacity to produce IFN-γ and interleukin-17A. Compared with healthy donors, this cellular network is impaired in patients with classical NK-cell deficiency driven by mutations in the GATA2 gene. Our findings reveal a previously unrecognized connection by which Tc17-mediated immunity might be regulated by NK-cell–mediated tuning of antigen-presenting cells.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1612-1621 ◽  
Author(s):  
Lei Yao ◽  
Cecilia Sgadari ◽  
Keizo Furuke ◽  
Eda T. Bloom ◽  
Julie Teruya-Feldstein ◽  
...  

Abstract Interleukin-12 (IL-12) inhibits angiogenesis in vivo by inducing interferon-γ (IFN-γ) and other downstream mediators. Here, we report that neutralization of natural killer (NK) cell function with antibodies to either asialo GM1 or NK 1.1 reversed IL-12 inhibition of basic fibroblast growth factor (bFGF)-induced angiogenesis in athymic mice. By immunohistochemistry, those sites where bFGF-induced neovascularization was inhibited by IL-12 displayed accumulation of NK cells and the presence of IP-10–positive cells. Based on expression of the cytolytic mediators perforin and granzyme B, the NK cells were locally activated. Experimental Burkitt lymphomas treated locally with IL-12 displayed tumor tissue necrosis, vascular damage, and NK-cell infiltration surrounding small vessels. After activation in vitro with IL-12, NK cells from nude mice became strongly cytotoxic for primary cultures of syngeneic aortic endothelial cells. Cytotoxicity was neutralized by antibodies to IFN-γ. These results document that NK cells are required mediators of angiogenesis inhibition by IL-12, and provide evidence that NK-cell cytotoxicity of endothelial cells is a potential mechanism by which IL-12 can suppress neovascularization.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 127-135 ◽  
Author(s):  
Christian P. Kalberer ◽  
Uwe Siegler ◽  
Aleksandra Wodnar-Filipowicz

Abstract Definition of the cytokine environment, which regulates the maturation of human natural killer (NK) cells, has been largely based on in vitro assays because of the lack of suitable animal models. Here we describe conditions leading to the development of human NK cells in NOD/SCID mice receiving grafts of hematopoietic CD34+ precursor cells from cord blood. After 1-week-long in vivo treatment with various combinations of interleukin (IL)–15, flt3 ligand, stem cell factor, IL-2, IL-12, and megakaryocyte growth and differentiation factor, CD56+CD3- cells were detected in bone marrow (BM), spleen, and peripheral blood (PB), comprising 5% to 15% of human CD45+ cells. Human NK cells of NOD/SCID mouse origin closely resembled NK cells from human PB with respect to phenotypic characteristics, interferon (IFN)–γ production, and cytotoxicity against HLA class 1–deficient K562 targets in vitro and antitumor activity against K562 erythroleukemia in vivo. In the absence of growth factor treatment, CD56+ cells were present only at background levels, but CD34+CD7+ and CD34-CD7+ lymphoid precursors with NK cell differentiation potential were detected in BM and spleen of chimeric NOD/SCID mice for up to 5 months after transplantation. Our results demonstrate that limitations in human NK cell development in the murine microenvironment can be overcome by treatment with NK cell growth–promoting human cytokines, resulting in the maturation of IFN-γ–producing cytotoxic NK cells. These studies establish conditions to explore human NK cell development and function in vivo in the NOD/SCID mouse model. (Blood. 2003;102:127-135)


Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2252-2258 ◽  
Author(s):  
Thierry Walzer ◽  
Marc Dalod ◽  
Scott H. Robbins ◽  
Laurence Zitvogel ◽  
Eric Vivier

AbstractSeveral recent publications have focused on the newly described interactions between natural-killer (NK) cells and dendritic cells (DCs). Activated NK cells induce DC maturation either directly or in synergy with suboptimal levels of microbial signals. Immature DCs appear susceptible to autologous NK-cell-mediated cytolysis while mature DCs are protected. NK-cell-induced DC activation is dependent on both tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) secretion and a cell-cell contact involving NKp30. In vitro, interleukin-12 (IL-12)/IL-18, IL-15, and IFN-α/β production by activated DCs enhance, in turn, NK-cell IFN-γ production, proliferation, and cytotoxic potential, respectively. In vivo, NK-cell/DC interactions may occur in lymphoid organs as well as in nonlymphoid tissues, and their consequences are multiple. By inducing DC activation, NK-cell activation induced by tumor cells can indirectly promote antitumoral T-cell responses. Reciprocally, DCs activated through Toll-like receptors (TLRs) induce potent NK-cell activation in antiviral responses. Thus, DCs and NK cells are equipped with complementary sets of receptors that allow the recognition of various pathogenic agents, emphasizing the role of NK-cell/DC crosstalk in the coordination of innate and adaptive immune responses.


2002 ◽  
Vol 9 (3) ◽  
pp. 649-657 ◽  
Author(s):  
D. Haller ◽  
P. Serrant ◽  
D. Granato ◽  
E. J. Schiffrin ◽  
S. Blum

ABSTRACT NK cells are instrumental in innate immune responses, in particular for the early production of gamma interferon (IFN-γ) and other cytokines necessary to control certain bacterial, parasitic, and viral infections. NK cell-mediated effector functions are controlled by a fine balance between distinct receptors mediating activating and inhibitory signals; however, little is known about activating receptors on NK cells and their corresponding ligands. Several studies have shown that commensal lactobacilli isolated from the human gastrointestinal tract activate human mononuclear cells and are potent inducers of IFN-γ and monocyte-derived interleukin 12 (IL-12). NK cell activation was shown for Lactobacillus johnsonii La1. In this study the cellular mechanisms of in vitro NK cell activation by gram-positive bacteria were analyzed. Staphylococcus aureus- and L. johnsonii La1-mediated activation of CD3− CD16+ CD56+ human peripheral blood NK cells, including expression of the activation antigen CD69 and secretion of IFN-γ, required cell contact-dependent costimulation by autologous monocytes. S. aureus- and L. johnsonii-preactivated monocytes retained their capacity to induce NK cell activation. In contrast, cytokine-primed monocytes completely failed to induce NK cell activation unless bacteria were present. This suggests that phagocytosis of bacteria provided additional coactivation signals on accessory cells that may differ from those induced by tumor necrosis factor and IFN-γ. Blocking of costimulatory molecules by B7.1, B7.2, and IL-12 but not CD14 monoclonal antibodies inhibited S. aureus- and L. johnsonii-induced effector function of NK cells. Our data suggest an important role for accessory cell-derived signals in the process of NK cell activation by gram-positive bacteria.


Sign in / Sign up

Export Citation Format

Share Document