scholarly journals Selection of Virulence-Associated Determinants ofStreptococcus suis Serotype 2 by In Vivo Complementation

2001 ◽  
Vol 69 (3) ◽  
pp. 1961-1966 ◽  
Author(s):  
Hilde E. Smith ◽  
Herma Buijs ◽  
Henk J. Wisselink ◽  
Norbert Stockhofe-Zurwieden ◽  
Mari A. Smits

ABSTRACT Within Streptococcus suis serotype 2, pathogenic, weakly pathogenic, and nonpathogenic strains can be found. We introduced a genomic library of a pathogenic strain into a weakly pathogenic strain. After infection of the library into young piglets pathogenic transformants were selected. One specific transformant containing a 3-kb fragment of the pathogenic strain appeared to be dominantly enriched in diseased pigs. The observed enrichment was not tissue specific. The selected fragment, when introduced into two different weakly pathogenic strains, increased the virulence of these strains considerably. In contrast, introduction of the corresponding fragment of a weakly pathogenic strain had only minor effects on virulence. Nucleotide sequence analysis of the selected fragment of the pathogenic strain revealed the presence of two potential open reading frames, both of which were found to be mutated in the corresponding fragment of the weakly pathogenic strain. These data strongly suggest that the selected fragment contains determinants important for virulence.

1986 ◽  
Vol 163 (2) ◽  
pp. 425-435 ◽  
Author(s):  
H Chang ◽  
E Dmitrovsky ◽  
P A Hieter ◽  
K Mitchell ◽  
P Leder ◽  
...  

Three new human lambda L chain-like Ig genes are identified by restriction enzyme and nucleotide sequence analysis. Two genes, 14.1 and 16.1, have intact J and C regions, and are potentially functional, with open reading frames. A third gene, 18.1, is a pseudogene. The evolutionary lineage of these genes compared to the known functional locus lambda C1-lambda C6 can be surmised from Southern blot and nucleotide homologies. This study demonstrates that the human lambda gene family is more complex than previously recognized.


2013 ◽  
Vol 58 (2) ◽  
pp. 1235-1239 ◽  
Author(s):  
Francesco Iannelli ◽  
Francesco Santoro ◽  
Marco R. Oggioni ◽  
Gianni Pozzi

ABSTRACTConjugative transposon Tn5253, an integrative conjugative element (ICE) ofStreptococcus pneumoniaecarrying thecatandtet(M) genes, was shown to be 64,528 bp in size and to contain 79 open reading frames, of which only 38 could be annotated. Two distinct genetic elements were found integrated into Tn5253: Tn5251(18,033 bp), of the Tn916-Tn1545family of ICEs, and Ωcat(pC194) (7,627 bp), which could not conjugate but was capable of intracellular mobility by excision, circularization, and integration by homologous recombination. The highest conjugation frequency of Tn5253was observed whenStreptococcus pyogeneswas the donor (6.7 × 10−3transconjugants/donor).


1995 ◽  
Vol 41 (3) ◽  
pp. 217-226 ◽  
Author(s):  
Margarita Beatriz Viejo ◽  
Josefina Enfedaque ◽  
Joan Francesc Guasch ◽  
Santiago Ferrer ◽  
Miguel Regué

The gene encoding bacteriocin 28b from Serratia marcescens N28b (bss gene) has been cloned in Escherichia coli and its nucleotide sequence has been determined. The genetic determinants coding for other well-characterized bacteriocins from enterobacteria (colicins) are located in plasmids and they have always been shown to contain a gene responsible for immunity located downstream from the bacteriocin structural gene. In some cases there is another gene located downstream from the immunity gene, which is responsible for bacteriocin release. Analysis of bacteriocin 28b release and the sensitivity to this bacteriocin of E. coli strains harbouring recombinant plasmids containing the bss gene showed that bacteriocin 28b is not released from the cell in these strains and that their phenotypic insensitivity is not associated with any region close to the structural gene. The nucleotide sequence of the region downstream from the bss gene contains two putative open reading frames transcribed in the opposite direction to the bss gene. These open reading frames apparently encode proteins that seem not to be involved in bacteriocin immunity or release. Moreover, a S. marcescens N28b genomic library was screened and no immunity gene was found. Therefore, bacteriocin 28b differs greatly from the bacteriocins from other enterobacteria, and in the following senses it is unique: firstly, the gene encoding bacteriocin 28b seems to be located on the chromosome, and secondly, insensitivity to this bacteriocin in S. marcescens N28b is not associated with the expression of an immunity gene.Key words: bacteriocin, pore-forming colicins, immunity, Serratia marcescens.


Biologia ◽  
2011 ◽  
Vol 66 (2) ◽  
Author(s):  
Peter Grones ◽  
Jozef Grones

AbstractComplete nucleotide sequence of plasmid pGP2 from Acetobacter estunensis GP2 was identified after initial cloning of EcoRI fragment followed by preparation of deletion derivatives. Its size was defined to 2,797 bp and several sites for several restriction enzymes were revealed by DNA sequencing. Sequence analysis predicts three putative open reading frames (ORFs). ORF1 shows significant identity with the bacterial excinuclease α-subunit, ORF2 is a putative replication protein with low similarity with other Acetobacter plasmid’s replication proteins, and ORF3 encodes a class B acid phosphatase/phosphotransferase. The replication module comprises a DnaA box like sequence, direct repeats, a potential prokaryotic promoter and a rep gene. The rep module is similar with several θ-replicating, iteron-containing modules from plasmids, suggesting pGP2 replication may follow the same course. Any phenotypic character determinant gene is absent in pGP2, suggesting this plasmid to be cryptic. However, a pGP2 derivative plasmid, containing the putative pGP2 rep region, can replicate and is stably maintained in Acetobacter and Escherichia coli strains; it can also carry foreign DNA fragments. Thus, pGP2-X could serve as a cloning shuttle vector between these bacteria. Prepared deletion derivatives of plasmid pGP2 suggested that Rep protein is essential for plasmid replication in host bacteria. In its natural host, A. estunensis GP2, pGP2 maintains a four-times lower copy number than in E. coli.


2001 ◽  
Vol 67 (8) ◽  
pp. 3564-3576 ◽  
Author(s):  
Chitladda Mahanivong ◽  
John D. Boyce ◽  
Barrie E. Davidson ◽  
Alan J. Hillier

ABSTRACT The Lactococcus lactis temperate bacteriophage BK5-T is one of twelve type phages that define L. lactis phage species. This paper describes the nucleotide sequence and analysis of a 21-kbp region of the BK5-T genome and completes the nucleotide sequence of the genome of this phage. The 40,003-nucleotide linear genome encodes 63 open reading frames. Sequence runoff experiments showed that the cohesive ends of the BK5-T genome contained a 12-bp 3′ single-stranded overhang with the sequence 5′-CACACACATAGG-3′. Two major BK5-T structural proteins, of approximately 30 and 20 kDa, were identified, and N-terminal sequence analysis determined that they were encoded by orf7 and orf12, respectively. A 169-bp fragment containing a 37-bp direct repeat and several smaller repeat sequences conferred resistance to BK5-T infection when introduced in trans to the host cell and is likely a part of the BK5-T origin of replication (ori).


2003 ◽  
Vol 69 (9) ◽  
pp. 5398-5409 ◽  
Author(s):  
Donna Parke ◽  
L. Nicholas Ornston

ABSTRACT Hydroxycinnamates are plant products catabolized through the diphenol protocatechuate in the naturally transformable bacterium Acinetobacter sp. strain ADP1. Genes for protocatechuate catabolism are central to the dca-pca-qui-pob-hca chromosomal island, for which gene designations corresponding to catabolic function are dca (dicarboxylic acid), pca (protocatechuate), qui (quinate), pob (p-hydroxybenzoate), and hca (hydroxycinnamate). Acinetobacter hcaC had been cloned and shown to encode a hydroxycinnamate:coenzyme A (CoA) SH ligase that acts upon caffeate, p-coumarate, and ferulate, but genes for conversion of hydroxycinnamoyl-CoA to protocatechuate had not been characterized. In this investigation, DNA from pobS to an XbaI site 5.3 kb beyond hcaC was captured in the plasmid pZR8200 by a strategy that involved in vivo integration of a cloning vector near the hca region of the chromosome. pZR8200 enabled Escherichia coli to convert p-coumarate to protocatechuate in vivo. Sequence analysis of the newly cloned DNA identified five open reading frames designated hcaA, hcaB, hcaK, hcaR, and ORF1. An Acinetobacter strain with a knockout of HcaA, a homolog of hydroxycinnamoyl-CoA hydratase/lyases, was unable to grow at the expense of hydroxycinnamates, whereas a strain mutated in HcaB, homologous to aldehyde dehydrogenases, grew poorly with ferulate and caffeate but well with p-coumarate. A chromosomal fusion of lacZ to the hcaE gene was used to monitor expression of the hcaABCDE promoter. LacZ was induced over 100-fold by growth in the presence of caffeate, p-coumarate, or ferulate. The protein deduced to be encoded by hcaR shares 28% identity with the aligned E. coli repressor, MarR. A knockout of hcaR produced a constitutive phenotype, as assessed in the hcaE::lacZ-Kmr genetic background, revealing HcaR to be a repressor as well. Expression of hcaE::lacZ in strains with knockouts in hcaA, hcaB, or hcaC revealed unambiguously that hydroxycinnamoyl-CoA thioesters relieve repression of the hcaABCDE genes by HcaR.


1982 ◽  
Vol 186 (4) ◽  
pp. 548-557 ◽  
Author(s):  
Steven R. King ◽  
Michael A. Krolewski ◽  
Sandra L. Marvo ◽  
Paul J. Lipson ◽  
Kay L. Pogue-Geile ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document