scholarly journals Identification and Characterization of a New Staphylococcal Enterotoxin-Related Putative Toxin Encoded by Two Kinds of Plasmids

2003 ◽  
Vol 71 (10) ◽  
pp. 6088-6094 ◽  
Author(s):  
Katsuhiko Omoe ◽  
Dong-Liang Hu ◽  
Hiromi Takahashi-Omoe ◽  
Akio Nakane ◽  
Kunihiro Shinagawa

ABSTRACT We identified and characterized a novel staphylococcal enterotoxin-like putative toxin, which is named SER. Nucleotide sequencing analysis of the ser gene revealed that ser was most closely related to the seg gene. The ser gene product, SER, was successfully expressed as a recombinant protein in an Escherichia coli expression system, and recombinant SER (rSER) showed significant T-cell stimulation activity. The SER production in ser-harboring Staphylococcus aureus strains was confirmed by Western blot analysis using anti-rSER antibody. Moreover, ser was seen to be encoded by at least two types of plasmids. In particular, one kind of plasmid encoding the ser gene has been known as a sed- and sej-carrying pIB485-related plasmid.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masuzu Kikuchi ◽  
Keiichi Kojima ◽  
Shin Nakao ◽  
Susumu Yoshizawa ◽  
Shiho Kawanishi ◽  
...  

AbstractMicrobial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons outwardly across the membrane and are indispensable for light-energy conversion in microorganisms. Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli expression system because that enables the rapid production of large amounts of recombinant proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (O. marina rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated counterion (pKa = 3.0) of the protonated Schiff base and (3) a rapid photocycle through several distinct photointermediates. Those features are similar to those of known eukaryotic proton pump rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for understanding and utilizing eukaryotic rhodopsins.


1970 ◽  
Vol 18 ◽  
pp. 99-103 ◽  
Author(s):  
S Biswas ◽  
MAK Parvez ◽  
M Shafiquzzaman ◽  
S Nahar ◽  
MN Rahman

Context: Escherichia coli is shed in the feces of warm blooded animals and humans and thus potential for public health. Detection and characterization of E. coli in the ready-to-eat (RTE) foods concerns due to their presence indicates fecal contamination of the food.   Objective: To identify, characterize and RFLP pattern analysis of E. coli isolated from RTE foods vended in Islamic University campus, Kushtia.   Materials and Methods: Fifty samples from four types of consumed foods in six student halls of residence, some temporary restaurants of Islamic University, Kushtia were assessed for bacterial contamination by standard methods. Identification and characterization of E. coli isolates were performed using IMViC tests. Genomic DNA was used to perform RFLP pattern analysis.   Results: Thirty seven out of 50 (74%) examined samples of RTE foods had E. coli contamination. The highest number of E. coli was isolated from vegetable oriented RTE foods (90.90%) and fish, meat and cereals samples were also significantly E. coli positive. RFLP profiling of two E. coli isolates were observed.   Conclusion: The results of this study provide evidence that some RTE foods had unsatisfactory levels of contamination with E. coli. Thus street vended RTE food could be important potential vehicles for food-borne diseases. Molecular characterization may be exploited to identify food borne pathogen among different species.  Keywords: Ready-to-eat foods; Escherichia coli; RFLP pattern DOI: http://dx.doi.org/10.3329/jbs.v18i0.8783 JBS 2010; 18(0): 99-103


2001 ◽  
Vol 45 (11) ◽  
pp. 3182-3188 ◽  
Author(s):  
Ellen Z. Baum ◽  
Deborah A. Montenegro ◽  
Lisa Licata ◽  
Ignatius Turchi ◽  
Glenda C. Webb ◽  
...  

ABSTRACT The bacterial enzyme MurA catalyzes the transfer of enolpyruvate from phosphoenolpyruvate (PEP) to uridine diphospho-N-acetylglucosamine (UNAG), which is the first committed step of bacterial cell wall biosynthesis. From high-throughput screening of a chemical library, three novel inhibitors of the Escherichia coli MurA enzyme were identified: the cyclic disulfide RWJ-3981, the purine analog RWJ-140998, and the pyrazolopyrimidine RWJ-110192. When MurA was preincubated with inhibitor, followed by addition of UNAG and PEP, the 50% inhibitory concentrations (IC50s) were 0.2 to 0.9 μM, compared to 8.8 μM for the known MurA inhibitor, fosfomycin. The three compounds exhibited MICs of 4 to 32 μg/ml against Staphylococcus aureus; however, the inhibition of DNA, RNA, and protein synthesis in addition to peptidoglycan synthesis by all three inhibitors indicated that antibacterial activity was not due specifically to MurA inhibition. The presence of UNAG during the MurA and inhibitor preincubation lowered the IC50 at least fivefold, suggesting that, like fosfomycin, the three compounds may interact with the enzyme in a specific fashion that is enhanced by UNAG. Ultrafiltration and mass spectrometry experiments suggested that the compounds were tightly, but not covalently, associated with MurA. Molecular modeling studies demonstrated that the compounds could fit into the site occupied by fosfomycin; exposure of MurA to each compound reduced the labeling of MurA by tritiated fosfomycin. Taken together, the evidence indicates that these inhibitors may bind noncovalently to the MurA enzyme, at or near the site where fosfomycin binds.


Sign in / Sign up

Export Citation Format

Share Document