protein expression system
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 14)

H-INDEX

20
(FIVE YEARS 2)

2020 ◽  
Vol 25 (2) ◽  
pp. 69
Author(s):  
Aris Haryanto ◽  
Hevi Wihadmadyatami ◽  
Nastiti Wijayanti

The aim of this work was the in vitro expression of the recombinant fusion (F) protein of Newcastle disease virus (NDV).  The pBT7-N-His-Fusion-NDV expression plasmid which carries the recombinant F protein encoding gene from local Indonesian isolates, was prepared and transformed into E. coli BL21 (DE3). To detect bacterial colonies carrying the recombinant plasmid, a restriction endonuclease analysis was performed using the EcoRI restriction endonuclease. These results showed that the pBT-N-His-Fusion-NDV plasmid was successfully isolated with a size of 4.601 bp, and three recombinant plasmids carrying the gene coding for the recombinant F protein of NDV were obtained. Selected recombinant plasmids were then in vitro by using a cell-free protein expression system followed by visualization of the recombinant F protein on a 12% SDS-PAGE gel both by Coomassie Brilliant Blue staining and Western blotting. Recombinant F protein was successfully in vitro expressed by using a cell-free protein expression system as indicated by a specific single protein band with a molecular mass of 25.6 kDa.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun-Hye Shin ◽  
Juyoung Choi ◽  
Jeongmin Jeon ◽  
Manu Kumar ◽  
Juhyeon Lee ◽  
...  

2020 ◽  
Vol 86 (15) ◽  
Author(s):  
Michelle O’ Connor ◽  
Des Field ◽  
Aoife Grainger ◽  
Paula M. O’ Connor ◽  
Lorraine Draper ◽  
...  

ABSTRACT Nisin A is a potent antimicrobial with potential as an alternative to traditional antibiotics, and a number of genetically modified variants have been created that target clinically relevant pathogens. In addition to antimicrobial activity, nisin autoregulates its own production via a signal transduction pathway, a property that has been exploited in a protein expression system termed the nisin-controlled gene expression (NICE) system. Although NICE has become one of the most popular protein expression systems, one drawback is that the inducer peptide, nisin A, also has inhibitory activity. It has already been demonstrated that the N-terminal region of nisin A contributes to antimicrobial activity and signal transduction properties; therefore, we conducted bioengineering of nisin at positions Pro9 and Gly10 within ring B to produce a bank of variants that could potentially be used as alternative induction peptides. One variant, designated nisin M, has threonines at positions 9 and 10 and retains induction capacity comparable to that of wild-type nisin A, while most of the antimicrobial activity is abolished. Further analysis confirmed that nisin M produces a mix of peptides as a result of different degrees of dehydration of the two threonines. We show that nisin M exhibits potential as a more suitable alternative to nisin A for the expression of proteins that may be difficult to express or for production of proteins in strains that are sensitive to wild-type nisin. Moreover, it may address the increasing demand by industry for optimization of peptide fermentations to increase yields or production rates. IMPORTANCE This study describes the generation of a nisin variant with superior characteristics for use in the NICE protein expression system. The variant, termed nisin M, retains an induction capacity comparable to that of wild-type nisin A but exhibits significantly reduced antimicrobial activity and can therefore be used at concentrations that are normally toxic to the expression host.


2020 ◽  
Vol 20 ◽  
pp. 04004
Author(s):  
Ahmad Pandu Satria Wiratama ◽  
Aris Haryanto

Newcastle Disease Virus (NDV) is an infectious disease that infect many kinds of wild and domesticated birds. Infection of NDV become a massive problem for poultry industry around the world especially in Indonesia. Vaccination is an effort to prevent the infection of NDV in poultry. NDV vaccine that used in Indonesia is a conventional life vaccine from LaSota and B1 strains. These type of vaccine is 21%-23% genetically distinct with the virus that spread in the environment. The antibody protection provided by the vaccine is not effective. Therefore, vaccination with new local NDV strain is needed to prevent the NDV infection in Indonesia. The previously study research reported that the local isolate of NDV from Kulon Progo, Indonesia has been isolated. Fusion (F) protein encoding gene that has been inserted into pBT7-N-His expression p lasmid which isolated from clone C-2a of E. coli, then it was expressed by the Cell-free protein expression system. The aim of this study was to confirm whether clone C-2a of E.coli carrying a recombinant plasmid pBT7-N-His-Fusion NDV and to express a recombinant F protein of NDV in-vitro from expression plasmid by cell-free protein expression system. This work started by detection of recombinant plasmid pBT7-N-His-Fusion NDV by DNA plasmid extraction followed by agarose gel electrophoresis. The recombinant F protein was in-vitro expressed by cell-free protein expression kit. The expressed F protein of NDV then was visualized by SDS-PAGE and Westernblott to analyse the expression of NDV recombinant F protein. It confirmed that clone C-2a of E. coli contained plasmid pBT7-N-His (4.001 bp) inserted by recombinant F protein of NDV gene (642 bp). The visualisation of expressed recombinant F protein by SDS-PAGE and Westernblott showed the NDV recombinant F protein was a specific protein fragment with molecular weight of 25,6 kDa..


Sign in / Sign up

Export Citation Format

Share Document