scholarly journals Analysis of the Contribution of Salmonella Pathogenicity Islands 1 and 2 to Enteric Disease Progression Using a Novel Bovine Ileal Loop Model and a Murine Model of Infectious Enterocolitis

2005 ◽  
Vol 73 (11) ◽  
pp. 7161-7169 ◽  
Author(s):  
Brian K. Coombes ◽  
Bryan A. Coburn ◽  
Andrew A. Potter ◽  
Susantha Gomis ◽  
Kuldip Mirakhur ◽  
...  

ABSTRACT We have developed a novel ileal loop model for use in calves to analyze the contribution of Salmonella enterica serovar Typhimurium type III secretion systems to disease processes in vivo. Our model involves constructing ileal loops with end-to-end anastamoses to restore the patency of the small intestine, thereby allowing experimental animals to convalesce following surgery for the desired number of days. This model overcomes the time constraint imposed by ligated ileal loop models that have precluded investigation of Salmonella virulence factors during later stages of the infection process. Here, we have used this model to examine the enteric disease process at 24 h and 5 days following infection with wild-type Salmonella and mutants lacking the virulence-associated Salmonella pathogenicity island 1 (SPI-1) or SPI-2 type III secretion systems. We show that SPI-2 mutants are dramatically attenuated at 5 days following infection and report a new phenotype for SPI-1 mutants, which induce intestinal pathology in calves similar to wild-type Salmonella in the 5-day ileal loop model. Both of these temporal phenotypes for SPI-1 and SPI-2 mutants were corroborated in a second animal model of enteric disease using streptomycin-pretreated mice. These data delineate novel phenotypes for SPI-1 and SPI-2 mutants in the intestinal phase of bovine and murine salmonellosis and provide working models to further investigate the effector contribution to these pathologies.

2011 ◽  
Vol 286 (41) ◽  
pp. 36098-36107 ◽  
Author(s):  
Xiu-Jun Yu ◽  
Mei Liu ◽  
Steve Matthews ◽  
David W. Holden

Type III secretion systems (T3SSs) of bacterial pathogens involve the assembly of a surface-localized needle complex, through which translocon proteins are secreted to form a pore in the eukaryotic cell membrane. This enables the transfer of effector proteins from the bacterial cytoplasm to the host cell. A structure known as the C-ring is thought to have a crucial role in secretion by acting as a cytoplasmic sorting platform at the base of the T3SS. Here, we studied SsaQ, an FliN-like putative C-ring protein of the Salmonella pathogenicity island 2 (SPI-2)-encoded T3SS. ssaQ produces two proteins by tandem translation: a long form (SsaQL) composed of 322 amino acids and a shorter protein (SsaQS) comprising the C-terminal 106 residues of SsaQL. SsaQL is essential for SPI-2 T3SS function. Loss of SsaQS impairs the function of the T3SS both ex vivo and in vivo. SsaQS binds to its corresponding region within SsaQL and stabilizes the larger protein. Therefore, SsaQL function is optimized by a novel chaperone-like protein, produced by tandem translation from its own mRNA species.


2007 ◽  
Vol 73 (24) ◽  
pp. 7934-7946 ◽  
Author(s):  
Ronald L. Thune ◽  
Denise H. Fernandez ◽  
Jennifer L. Benoit ◽  
Maria Kelly-Smith ◽  
Matthew L. Rogge ◽  
...  

ABSTRACT Edwardsiella ictaluri is the leading cause of mortality in channel catfish culture, but little is known about its pathogenesis. The use of signature-tagged mutagenesis in a waterborne infection model resulted in the identification of 50 mutants that were unable to infect/survive in catfish. Nineteen had minitransposon insertions in miscellaneous genes in the chromosome, 10 were in genes that matched to hypothetical proteins, and 13 were in genes that had no significant matches in the NCBI databases. Eight insertions were in genes encoding proteins associated with virulence in other pathogens, including three in genes involved in lipopolysaccharide biosynthesis, three in genes involved in type III secretion systems (TTSS), and two in genes involved in urease activity. With the use of a sequence from a lambda clone carrying several TTSS genes, Blastn analysis of the partially completed E. ictaluri genome identified a 26,135-bp pathogenicity island containing 33 genes of a TTSS with similarity to the Salmonella pathogenicity island 2 class of TTSS. The characterization of a TTSS apparatus mutant indicated that it retained its ability to invade catfish cell lines and macrophages but was defective in intracellular replication. The mutant also invaded catfish tissues in numbers equal to those of invading wild-type E. ictaluri bacteria but replicated poorly and was slowly cleared from the tissues, while the wild type increased in number.


2003 ◽  
Vol 185 (11) ◽  
pp. 3480-3483 ◽  
Author(s):  
Anand Sukhan ◽  
Tomoko Kubori ◽  
Jorge E. Galán

ABSTRACT An essential component of type III secretion systems (TTSS) is a supramolecular structure termed the needle complex. In Salmonella enterica, at least four proteins make up this structure: InvG, PrgH, PrgK, and PrgI. Another protein, PrgJ, is thought to play a role in the assembly of this structure, but its function is poorly understood. We have analyzed the expression and localization of PrgJ and the needle protein PrgI in different S. enterica serovar Typhimurium mutant strains. We found that the levels of PrgI and PrgJ were significantly reduced in a TTSS-deficient invA mutant strain and that the decreased levels were due to protein instability. In addition, we found that PrgJ, although associated with the needle complex in wild-type S. enterica serovar Typhimurium, was absent from needle complexes obtained from an invJ mutant strain, which exhibits very long needle substructures. We suggest that PrgJ is involved in capping the needle substructure of the needle complex.


2010 ◽  
Vol 78 (11) ◽  
pp. 4551-4559 ◽  
Author(s):  
Pablo Piñeyro ◽  
Xiaohui Zhou ◽  
Lisa H. Orfe ◽  
Patrick J. Friel ◽  
Kevin Lahmers ◽  
...  

ABSTRACT Vibrio parahaemolyticus is an emerging food- and waterborne pathogen that encodes two type III secretion systems (T3SSs). Previous studies have linked type III secretion system 1 (T3SS1) to cytotoxicity and T3SS2 to intestinal fluid accumulation, but animal challenge models needed to study these phenomena are limited. In this study we evaluated the roles of the T3SSs during infection using two novel animal models: a model in which piglets were inoculated orogastrically and a model in which mice were inoculated in their lungs (intrapulmonarily). The bacterial strains employed in this study had equivalent growth rates and beta-hemolytic activity based on in vitro assays. Inoculation of 48-h-old conventional piglets with 1011 CFU of the wild-type strain (NY-4) or T3SS1 deletion mutant strains resulted in acute, self-limiting diarrhea, whereas inoculation with a T3SS2 deletion mutant strain failed to produce any clinical symptoms. Intrapulmonary inoculation of C57BL/6 mice with the wild-type strain and T3SS2 deletion mutant strains (5 × 105 CFU) induced mortality or a moribund state within 12 h (80 to 100% mortality), whereas inoculation with a T3SS1 deletion mutant or a T3SS1 T3SS2 double deletion mutant produced no mortality. Bacteria were recovered from multiple organs regardless of the strain used in the mouse model, indicating that the mice were capable of clearing the lung infection in the absence of a functional T3SS1. Because all strains had a similar beta-hemolysin phenotype, we surmise that thermostable direct hemolysin (TDH) plays a limited role in these models. The two models introduced herein produce robust results and provide a means to determine how different T3SS1 and T3SS2 effector proteins contribute to pathogenesis of V. parahaemolyticus infection.


2007 ◽  
Vol 51 (7) ◽  
pp. 2631-2635 ◽  
Author(s):  
Debra L. Hudson ◽  
Abigail N. Layton ◽  
Terry R. Field ◽  
Alison J. Bowen ◽  
Hans Wolf-Watz ◽  
...  

ABSTRACT Type III secretion systems (T3SS) are conserved in many pathogenic gram-negative bacteria. Small molecules that specifically target T3SS in Yersinia and Chlamydia spp. have recently been identified. Here we show that two such compounds inhibit Salmonella T3SS-1, preventing secretion of T3SS-1 effectors, invasion of cultured epithelial cells, and enteritis in vivo.


2002 ◽  
Vol 184 (21) ◽  
pp. 5966-5970 ◽  
Author(s):  
Sarah E. Burr ◽  
Katja Stuber ◽  
Thomas Wahli ◽  
Joachim Frey

ABSTRACT Aeromonas salmonicida subsp. salmonicida, the etiological agent of furunculosis, is an important fish pathogen. We have screened this bacterium with a broad-host-range probe directed against yscV, the gene that encodes the archetype of a highly conserved family of inner membrane proteins found in every known type III secretion system. This has led to the identification of seven open reading frames that encode homologues to proteins functioning within the type III secretion systems of Yersinia species. Six of these proteins are encoded by genes comprising a virA operon. The A. salmonicida subsp. salmonicida yscV homologue, ascV, was inactivated by marker replacement mutagenesis and used to generate an isogenic ascV mutant. Comparison of the extracellular protein profiles from the ascV mutant and the wild-type strain indicates that A. salmonicida subsp. salmonicida secretes proteins via a type III secretion system. The recently identified ADP-ribosylating toxin AexT was identified as one such protein. Finally, we have compared the toxicities of the wild-type A. salmonicida subsp. salmonicida strain and the ascV mutant against RTG-2 rainbow trout gonad cells. While infection with the wild-type strain results in significant morphological changes, including cell rounding, infection with the ascV mutant has no toxic effect, indicating that the type III secretion system we have identified plays an important role in the virulence of this pathogen.


2007 ◽  
Vol 75 (9) ◽  
pp. 4342-4350 ◽  
Author(s):  
Manuela Raffatellu ◽  
Renato L. Santos ◽  
Daniela Chessa ◽  
R. Paul Wilson ◽  
Sebastian E. Winter ◽  
...  

ABSTRACT The viaB locus contains genes for the biosynthesis and export of the Vi capsular antigen of Salmonella enterica serotype Typhi. Wild-type serotype Typhi induces less CXC chemokine production in tissue culture models than does an isogenic viaB mutant. Here we investigated the in vivo relevance of these observations by determining whether the presence of the viaB region prevents inflammation in two animal models of gastroenteritis. Unlike S. enterica serotype Typhimurium, serotype Typhi or a serotype Typhi viaB mutant did not elicit marked inflammatory changes in the streptomycin-pretreated mouse model. In contrast, infection of bovine ligated ileal loops with a serotype Typhi viaB mutant resulted in more fluid accumulation and higher expression of the chemokine growth-related oncogene alpha (GROα) and interleukin-17 (IL-17) than did infection with the serotype Typhi wild type. There was a marked upregulation of IL-17 expression in both the bovine ligated ileal loop model and the streptomycin-pretreated mouse model, suggesting that this cytokine is an important component of the inflammatory response to infection with Salmonella serotypes. Introduction of the cloned viaB region into serotype Typhimurium resulted in a significant reduction of GROα and IL-17 expression and in reduced fluid secretion. Our data support the idea that the viaB region plays a role in reducing intestinal inflammation in vivo.


2002 ◽  
Vol 99 (19) ◽  
pp. 12397-12402 ◽  
Author(s):  
C. Dale ◽  
G. R. Plague ◽  
B. Wang ◽  
H. Ochman ◽  
N. A. Moran

Sign in / Sign up

Export Citation Format

Share Document