scholarly journals Analysis of Cell Type-Specific Responses Mediated by the Type IV Secretion System of Helicobacter pylori

2005 ◽  
Vol 73 (8) ◽  
pp. 4643-4652 ◽  
Author(s):  
Bianca Bauer ◽  
Stefan Moese ◽  
Sina Bartfeld ◽  
Thomas F. Meyer ◽  
Matthias Selbach

ABSTRACT Helicobacter pylori persistently infects the human stomach and can cause gastritis, gastric ulceration, and gastric cancer. The type IV secretion system (TFSS) of virulent H. pylori strains translocates the CagA protein, inducing the dephosphorylation of host cell proteins and leading to changes in the morphology or shape of AGS gastric epithelial cells. Furthermore, the TFSS is involved in the induction of proinflammatory cytokines. While the H. pylori genes required for TFSS function have been investigated systematically, little is known about possible host cell factors involved. We infected 19 different mammalian cell lines individually with H. pylori and analyzed CagA translocation, dephosphorylation of host cell proteins, chemokine secretion (interleukin-8 and macrophage inflammatory protein 2), and changes in cellular phenotypes. Our results demonstrate that not only bacterial but also host cell factors determine the cellular response to infection. The identification of such unknown host cell factors will add to our understanding of host-pathogen interactions and might help in the development of new therapeutic strategies.

2006 ◽  
Vol 188 (13) ◽  
pp. 4787-4800 ◽  
Author(s):  
Valerie J. Busler ◽  
Victor J. Torres ◽  
Mark S. McClain ◽  
Oscar Tirado ◽  
David B. Friedman ◽  
...  

ABSTRACT Many Helicobacter pylori isolates contain a 40-kb region of chromosomal DNA known as the cag pathogenicity island (PAI). The risk for development of gastric cancer or peptic ulcer disease is higher among humans infected with cag PAI-positive H. pylori strains than among those infected with cag PAI-negative strains. The cag PAI encodes a type IV secretion system that translocates CagA into gastric epithelial cells. To identify Cag proteins that are expressed by H. pylori during growth in vitro, we compared the proteomes of a wild-type H. pylori strain and an isogenic cag PAI deletion mutant using two-dimensional difference gel electrophoresis (2D-DIGE) in multiple pH ranges. Seven Cag proteins were identified by this approach. We then used a yeast two-hybrid system to detect potential protein-protein interactions among 14 Cag proteins. One heterotypic interaction (CagY/7 with CagX/8) and two homotypic interactions (involving H. pylori VirB11/ATPase and Cag5) were similar to interactions previously reported to occur among homologous components of the Agrobacterium tumefaciens type IV secretion system. Other interactions involved Cag proteins that do not have known homologues in other bacterial species. Biochemical analysis confirmed selected interactions involving five of the proteins that were identified by 2D-DIGE. Protein-protein interactions among Cag proteins are likely to have an important role in the assembly of the H. pylori type IV secretion apparatus.


2011 ◽  
Vol 7 (9) ◽  
pp. e1002237 ◽  
Author(s):  
Carrie L. Shaffer ◽  
Jennifer A. Gaddy ◽  
John T. Loh ◽  
Elizabeth M. Johnson ◽  
Salisha Hill ◽  
...  

2017 ◽  
Author(s):  
Stephanie Zimmermann ◽  
Lennart Pfannkuch ◽  
Munir A. Al-Zeer ◽  
Sina Bartfeld ◽  
Manuel Koch ◽  
...  

SummaryActivation of transcription factor NF-κB is a hallmark of infection with the gastric pathogen Helicobacter pylori and associated with inflammation and carcinogenesis. Genome-wide RNAi screening revealed numerous hits involved in H. pylori-, but not IL-1β- and TNF-α- dependent NF-κB regulation. Pathway analysis including CRISPR/Cas9-knockout and recombinant protein technology, immunofluorescence microscopy, immunoblotting, mass spectrometry and mutant H. pylori strains, identified the H. pylori metabolite D-glycero-β-D-manno-heptose 1,7-bisphosphate (βHBP) as a cagPAI type IV secretion system (T4SS)-dependent effector of NF-κB activation in infected cells. Upon pathogen-host cell contact, TIFA forms large complexes (TIFAsomes) including interacting host factors, such as TRAF2. NF-κB activation, TIFA phosphorylation as well as TIFAsome formation depended on a functional ALPK1 kinase, highlighting the ALPK1-TIFA axis as core of a novel innate immune pathway. ALPK1-TIFA-mediated NF-κB activation was independent of CagA protein translocation, indicating that CagA translocation and HBP delivery to host cells are distinct features of the pathogen’s T4SS.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. e03147-20
Author(s):  
Emma C. Skoog ◽  
Miriam E. Martin ◽  
Roberto M. Barrozo ◽  
Lori M. Hansen ◽  
Lucy P. Cai ◽  
...  

ABSTRACTThe Helicobacter pylori type IV secretion system (T4SS) encoded on the cag pathogenicity island (cagPAI) secretes the CagA oncoprotein and other effectors into the gastric epithelium. During murine infection, T4SS function is lost in an immune-dependent manner, typically as a result of in-frame recombination in the middle repeat region of cagY, though single nucleotide polymorphisms (SNPs) in cagY or in other essential genes may also occur. Loss of T4SS function also occurs in gerbils, nonhuman primates, and humans, suggesting that it is biologically relevant and not simply an artifact of the murine model. Here, we sought to identify physiologically relevant conditions under which T4SS function is maintained in the murine model. We found that loss of H. pylori T4SS function in mice was blunted by systemic Salmonella coinfection and completely eliminated by dietary iron restriction. Both have epidemiologic parallels in humans, since H. pylori strains from individuals in developing countries, where iron deficiency and systemic infections are common, are also more often cagPAI+ than strains from developed countries. These results have implications for our fundamental understanding of the cagPAI and also provide experimental tools that permit the study of T4SS function in the murine model.IMPORTANCE The type IV secretion system (T4SS) is the major Helicobacter pylori virulence factor, though its function is lost during murine infection. Loss of function also occurs in gerbils and in humans, suggesting that it is biologically relevant, but the conditions under which T4SS regulation occurs are unknown. Here, we found that systemic coinfection with Salmonella and iron deprivation each promote retention of T4SS function. These results improve our understanding of the cag pathogenicity island (cagPAI) and provide experimental tools that permit the study of T4SS function in the murine model.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Michael J Sheedlo ◽  
Jeong Min Chung ◽  
Neha Sawhney ◽  
Clarissa L Durie ◽  
Timothy L Cover ◽  
...  

The pathogenesis of Helicobacter pylori-associated gastric cancer is dependent on delivery of CagA into host cells through a type IV secretion system (T4SS). The H. pylori Cag T4SS includes a large membrane-spanning core complex containing five proteins, organized into an outer membrane cap (OMC), a periplasmic ring (PR) and a stalk. Here, we report cryo-EM reconstructions of a core complex lacking Cag3 and an improved map of the wild-type complex. We define the structures of two unique species-specific components (Cag3 and CagM) and show that Cag3 is structurally similar to CagT. Unexpectedly, components of the OMC are organized in a 1:1:2:2:5 molar ratio (CagY:CagX:CagT:CagM:Cag3). CagX and CagY are components of both the OMC and the PR and bridge the symmetry mismatch between these regions. These results reveal that assembly of the H. pylori T4SS core complex is dependent on incorporation of interwoven species-specific components.


2014 ◽  
Vol 82 (8) ◽  
pp. 3457-3470 ◽  
Author(s):  
Elizabeth M. Johnson ◽  
Jennifer A. Gaddy ◽  
Bradley J. Voss ◽  
Ewa E. Hennig ◽  
Timothy L. Cover

ABSTRACTHelicobacter pyloricauses numerous alterations in gastric epithelial cells through processes that are dependent on activity of thecagtype IV secretion system (T4SS). Filamentous structures termed “pili” have been visualized at the interface betweenH. pyloriand gastric epithelial cells, and previous studies suggested that pilus formation is dependent on the presence of thecagpathogenicity island (PAI). Thus far, there has been relatively little effort to identify specific genes that are required for pilus formation, and the role of pili in T4SS function is unclear. In this study, we selected 7 genes in thecagPAI that are known to be required for T4SS function and investigated whether these genes were required for pilus formation.cagT,cagX,cagV,cagM, andcag3mutants were defective in both T4SS function and pilus formation; complemented mutants regained T4SS function and the capacity for pilus formation.cagYandcagCmutants were defective in T4SS function but retained the capacity for pilus formation. These results define a set ofcagPAI genes that are required for both pilus biogenesis and T4SS function and reveal that these processes can be uncoupled in specific mutant strains.


2019 ◽  
Author(s):  
Ah-Ra Jang ◽  
Min-Jung Kang ◽  
Jeong-Ih Shin ◽  
Soon-Wook Kwon ◽  
Ji-Yeon Park ◽  
...  

ABSTRACTHelicobacter pylori is a gram-negative, microaerophilic, and spiral-shaped bacterium and causes gastrointestinal diseases in human. IL-1β is a representative cytokine produced in innate immune cells and is considered to be a key factor in the development of gastrointestinal malignancies. However, the mechanism of IL-1β production by neutrophils during H. pylori infection is still unknown. We designed this study to identify host and bacterial factors involved in regulation of H. pylori-induced IL-1β production in neutrophils. We found that H. pylori-induced IL-1β production is abolished in NLRP3-, ASC-, and caspase-1/11-deficient neutrophils, suggesting essential role for NLRP3 inflammasome in IL-1β response against H. pylori. Host TLR2, but not TLR4 and Nod2, was also required for transcription of NLRP3 and IL-1β as well as secretion of IL-1β. H. pylori lacking cagL, a key component of the type IV secretion system (T4SS), induced less IL-1β production in neutrophils than did its isogenic WT strain, whereas vacA and ureA were dispensable. Moreover, T4SS was involved in caspase-1 activation and IL-1β maturation in H. pylori-infected neutrophils. We also found that FlaA is essential for H. pylori-mediated IL-1β production in neutrophils, but not dendritic cells. TLR5 and NLRC4 were not required for H. pylori-induced IL-1β production in neutrophils. Instead, bacterial motility is essential for the production of IL-1β in response to H. pylori. In conclusion, our study shows that host TLR2 and NLRP3 inflammasome and bacterial T4SS and motility are essential factors for IL-1β production by neutrophils in response to H. pylori.IMPORTANCEIL-1β is a representative pro-inflammatory cytokine and is considered to be a central host factor for the development of gastric cancers. Although neutrophils have been considered to be involved in H. pylori-induced gastric inflammation, the underlying mechanism by which H. pylori triggers IL-1β production in neutrophils remains to be defined. In this study, our data suggested a critical role for the host TLR2 and NLRP3 inflammasome in IL-1β production by neutrophil during H. pylori infection. Moreover, we found the bacterial factors, T4SS and FlaA, to be essential for IL-1β production and NLRP3 activation during the course of H. pylori infection. Our current findings provide detailed molecular genetic mechanisms associated with IL-1β production in neutrophils in response to H. pylori infection, which can serve as innovative anti-inflammatory targets to reduce H. pylori-induced gastric malignancies.


Author(s):  
Clara Lettl ◽  
Franziska Schindele ◽  
Giambattista Testolin ◽  
Alexander Bär ◽  
Tobias Rehm ◽  
...  

Type IV secretion systems are protein secretion machineries that are frequently used by pathogenic bacteria to inject their virulence factors into target cells of their respective hosts. In the case of the human gastric pathogen Helicobacter pylori, the cytotoxin-associated gene (Cag) type IV secretion system is considered a major cause for severe disease, such as gastric cancer, and thus constitutes an attractive target for specific treatment options against H. pylori infections. Here, we have used a Cag type IV secretion reporter assay for screening a repurposing compound library for inhibitors targeting this system. We found that the antitumor agent cisplatin, a platinum coordination complex that kills target cells by formation of DNA crosslinks, is a potent inhibitor of the Cag type IV secretion system. Strikingly, we found that this inhibitory activity of cisplatin depends on a ligand exchange reaction which incorporates a solvent molecule (dimethylsulfoxide) into the complex, a modification which is known to be deleterious for DNA crosslinking, and for its anticancer activity. We extended our analysis to several analogous platinum complexes containing N-heterocyclic carbene, as well as DMSO or other ligands, and found varying inhibitory activities toward the Cag system which were not congruent with their DNA-binding properties, suggesting that protein interactions may cause the inhibitory effect. Inhibition experiments under varying conditions revealed effects on adherence and bacterial viability as well, and showed that the type IV secretion-inhibitory capacity of platinum complexes can be inactivated by sulfur-containing reagents and in complex bacterial growth media. Taken together, our results demonstrate DNA binding-independent inhibitory effects of cisplatin and other platinum complexes against different H. pylori processes including type IV secretion.


Sign in / Sign up

Export Citation Format

Share Document