scholarly journals An Unstable Competence-Induced Protein, CoiA, Promotes Processing of Donor DNA after Uptake during Genetic Transformation in Streptococcus pneumoniae

2006 ◽  
Vol 188 (14) ◽  
pp. 5177-5186 ◽  
Author(s):  
Bhushan V. Desai ◽  
Donald A. Morrison

ABSTRACT Natural genetic transformation in Streptococcus pneumoniae entails transcriptional activation of at least two sets of genes. One set of genes, activated by the competence-specific response regulator ComE, is involved in initiating competence, whereas a second set is activated by the competence-specific alternative sigma factor ComX and functions in DNA uptake and recombination. Here we report an initial characterization of CoiA, a ComX-dependent gene product that is induced during competence and is required for transformation. CoiA is widely conserved among gram-positive bacteria, and in streptococci, the entire coiA locus composed of four genes is conserved. By use of immunoblot assay, we show that, similar to its message, CoiA protein is transient, appearing at 10 min and largely disappearing by 30 min post-competence induction. Using complementation analysis, we establish that coiA is the only gene of this induced locus needed for transformability. We find no indication of CoiA having a role in regulating competence. Finally, using 32P- and 3H-labeled donor DNA, we demonstrate that a coiA mutant can internalize normal amounts of donor DNA compared to the wild-type strain but is unable to process it into viable transformants, suggesting a role for CoiA after DNA uptake, either in DNA processing or recombination.

2001 ◽  
Vol 12 (3) ◽  
pp. 217-243 ◽  
Author(s):  
D.G. Cvitkovitch

The oral streptococci are normally non-pathogenic residents of the human microflora. There is substantial evidence that these bacteria can, however, act as "genetic reservoirs" and transfer genetic information to transient bacteria as they make their way through the mouth, the principal entry point for a wide variety of bacteria. Examples that are of particular concern include the transfer of antibiotic resistance from oral streptococci to Streptococcus pneumoniae. The mechanisms that are used by oral streptococci to exchange genetic information are not well-understood, although several species are known to enter a physiological state of genetic competence. This state permits them to become capable of natural genetic transformation, facilitating the acquisition of foreign DNA from the external environment. The oral streptococci share many similarities with two closely related Gram-positive bacteria. S. pneumoniae and Bacillus subtilis. In these bacteria, the mechanisms of quorum-sensing, the development of competence, and DNA uptake and integration are well-charaterized. Using this knowledge and the data available in genome databases allowed us to identify putative genes involved in these processes in the oral organism Streptococcus mutans. Models of competence development and genetic transformation in the oral streptococci and strategies to confirm these models are discussed. Future studies of competence in oral biofilms, the natural environment of oral streptococci, will be discussed.


PLoS Genetics ◽  
2013 ◽  
Vol 9 (9) ◽  
pp. e1003819 ◽  
Author(s):  
Calum Johnston ◽  
Stéphanie Caymaris ◽  
Aldert Zomer ◽  
Hester J. Bootsma ◽  
Marc Prudhomme ◽  
...  

2010 ◽  
Vol 192 (17) ◽  
pp. 4388-4394 ◽  
Author(s):  
Kyle J. Wayne ◽  
Lok-To Sham ◽  
Ho-Ching T. Tsui ◽  
Alina D. Gutu ◽  
Skye M. Barendt ◽  
...  

ABSTRACT The WalRK two-component regulatory system coordinates gene expression that maintains cell wall homeostasis and responds to antibiotic stress in low-GC Gram-positive bacteria. Phosphorylated WalR (VicR) of the major human respiratory pathogen Streptococcus pneumoniae (WalR Spn ) positively regulates transcription of several surface virulence genes and, most critically, pcsB, which encodes an essential cell division protein. Despite numerous studies of several species, little is known about the signals sensed by the WalK histidine kinase or the function of the WalJ ancillary protein encoded in the walRKSpn operon. To better understand the functions of the WalRKJ Spn proteins in S. pneumoniae, we performed experiments to determine their cellular localization and amounts. In contrast to WalK from Bacillus subtilis (WalK Bsu ), which is localized at division septa, immunofluorescence microscopy showed that WalK Spn is distributed throughout the cell periphery. WalJ Spn is also localized to the cell surface periphery, whereas WalR Spn was found to be localized in the cytoplasm around the nucleoid. In fractionation experiments, WalR Spn was recovered from the cytoplasmic fraction, while WalK Spn and the majority of WalJ Spn were recovered from the cell membrane fraction. This fractionation is consistent with the localization patterns observed. Lastly, we determined the cellular amounts of WalRKJ Spn by quantitative Western blotting. The WalR Spn response regulator is relatively abundant and present at levels of ≈6,200 monomers per cell, which are ≈14-fold greater than the amount of the WalK Spn histidine kinase, which is present at ≈460 dimers (920 monomers) per cell. We detected ≈1,200 monomers per cell of WalJ Spn ancillary protein, similar to the amount of WalK Spn .


2007 ◽  
Vol 189 (6) ◽  
pp. 2497-2509 ◽  
Author(s):  
Zhuo Ma ◽  
Jing-Ren Zhang

ABSTRACT Streptococcus pneumoniae colonizes at the nasopharynx of humans and is able to disseminate and cause various infections. The hallmark of pneumococcal disease is rapid bacterial replication in different tissue sites leading to intense inflammation. The genetic basis of pneumococcal adaptation to different host niches remains sketchy. In this study, we investigated the regulatory effect of RR06, a response regulator protein, on gene expression of S. pneumoniae. Microarray and Northern blot analyses showed that RR06 is specifically required for transcription of spr1996 and cbpA. While the function of Spr1996 is unknown, CbpA has been well characterized as a surface-exposed protective antigen and a virulence factor of S. pneumoniae. A recombinant form of RR06 was able to bind to a 19-bp conserved sequence shared by the spr1996 and cbpA promoter regions. Furthermore, inactivation of rr06 resulted in loss of CbpA expression as detected by antibody staining and bacterial adhesion. CbpA expression was restored in trans by the intact rr06 gene. However, a mutant, RR06(D51A), with a point mutation in the aspartate residue at position 51 (a predicted major phosphorylation site) of RR06, completely abolished the CbpA expression, suggesting that RR06 phosphorylation is required for transcriptional activation of spr1996 and cbpA. Finally, inactivation of rr06 in additional pneumococcal strains also led to the loss of CbpA expression. These data implicate that RR06 activates the expression of spr1996 and cbpA in many other pneumococcal strains.


mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Chrispin Chaguza ◽  
Cheryl P. Andam ◽  
Simon R. Harris ◽  
Jennifer E. Cornick ◽  
Marie Yang ◽  
...  

ABSTRACT Streptococcus pneumoniae causes a high burden of invasive pneumococcal disease (IPD) globally, especially in children from resource-poor settings. Like many bacteria, the pneumococcus can import DNA from other strains or even species by transformation and homologous recombination, which has allowed the pneumococcus to evade clinical interventions such as antibiotics and pneumococcal conjugate vaccines (PCVs). Pneumococci are enclosed in a complex polysaccharide capsule that determines the serotype; the capsule varies in size and is associated with properties including carriage prevalence and virulence. We determined and quantified the association between capsule and recombination events using genomic data from a diverse collection of serotypes sampled in Malawi. We determined both the amount of variation introduced by recombination relative to mutation (the relative rate) and how many individual recombination events occur per isolate (the frequency). Using univariate analyses, we found an association between both recombination measures and multiple factors associated with the capsule, including duration and prevalence of carriage. Because many capsular factors are correlated, we used multivariate analysis to correct for collinearity. Capsule size and carriage duration remained positively associated with recombination, although with a reduced P  value, and this effect may be mediated through some unassayed additional property associated with larger capsules. This work describes an important impact of serotype on recombination that has been previously overlooked. While the details of how this effect is achieved remain to be determined, it may have important consequences for the serotype-specific response to vaccines and other interventions. IMPORTANCE The capsule determines >90 different pneumococcal serotypes, which vary in capsule size, virulence, duration, and prevalence of carriage. Current serotype-specific vaccines elicit anticapsule antibodies. Pneumococcus can take up exogenous DNA by transformation and insert it into its chromosome by homologous recombination. This mechanism has disseminated drug resistance and generated vaccine escape variants. It is hence crucial to pneumococcal evolutionary response to interventions, but there has been no systematic study quantifying whether serotypes vary in recombination and whether this is associated with serotype-specific properties such as capsule size or carriage duration. Larger capsules could physically inhibit DNA uptake, or given the longer carriage duration for larger capsules, this may promote recombination. We find that recombination varies among capsules and is associated with capsule size, carriage duration, and carriage prevalence and negatively associated with invasiveness. The consequence of this work is that serotypes with different capsules may respond differently to selective pressures like vaccines.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Matthieu J. Bergé ◽  
Chryslène Mercy ◽  
Isabelle Mortier-Barrière ◽  
Michael S. VanNieuwenhze ◽  
Yves V. Brun ◽  
...  

2001 ◽  
Vol 183 (7) ◽  
pp. 2359-2366 ◽  
Author(s):  
Stefan Graupner ◽  
Wilfried Wackernagel

ABSTRACT Pseudomonas stutzeri has type IV pili for which the pilA gene (here termed pilAI) provides the structural protein and which are required for DNA uptake and natural genetic transformation. Downstream of pilAIwe identified a gene, termed pilAII, coding for a deduced protein with a size similar to that of PilAI with 55% amino acid sequence identity and with a typical leader peptide including a leader peptidase cleavage site. Fusions to lacZ revealed that pilAII is expressed only about 10% compared topilAI, although the genes are cotranscribed as shown by reverse transcription-PCR. Surprisingly, insertional inactivation ofpilAII produced a hypertransformation phenotype giving about 16-fold-increased transformation frequencies. Hypertransformation also occurred in pilAI pilAII double mutants expressing heterologous pilA genes of nontransformable bacteria, like Pseudomonas aeruginosa or Dichelobacter nodosus. The overexpression of pilAII decreased transformation up to 5,000-fold compared to that of thepilAII mutant. However, neither inactivation ofpilAII nor its overexpression affected the amounts of [3H]thymidine-labeled DNA that were competence-specifically bound and taken up by the cells. In thepilAII mutant, the transformation by purified single-stranded DNA (which depends on comA andexbB, as does transformation by duplex DNA) was also increased 17-fold. It is concluded that PilAII suppresses a step in transformation after the uptake of duplex DNA into the cell and perhaps before its translocation into the cytoplasm. The idea that the degree of the transformability of cells could be permanently adjusted by the expression level of an antagonistic protein is discussed.


Microbiology ◽  
2011 ◽  
Vol 157 (11) ◽  
pp. 3104-3112 ◽  
Author(s):  
Miriam Müller ◽  
Patrick Marx ◽  
Regine Hakenbeck ◽  
Reinhold Brückner

The two-component regulatory system CiaRH of Streptococcus pneumoniae affects β-lactam susceptibility, autolysis, bacteriocin production, competence development, host colonization and virulence. The system was discovered in a screen for S. pneumoniae R6 mutants resistant to the β-lactam antibiotic cefotaxime. A mutation in the histidine kinase gene ciaH led to this phenotype by enhancing CiaR-mediated gene expression. Additional mutations in ciaH have been described in other spontaneous β-lactam-resistant mutants of S. pneumoniae R6, but their influence on CiaR-mediated gene regulation has not been determined. Likewise, altered ciaH alleles are present in clinical S. pneumoniae isolates, none of which had been characterized. These novel ciaH variants were introduced into S. pneumoniae R6 to measure their ability to activate CiaR-dependent regulation. The ciaH alleles from spontaneous mutants obtained in the laboratory increased the activity of CiaR-dependent promoters between four- and 26-fold, while variants from clinical strains were less effective, with a threefold activation at most. Accordingly, phenotypes associated with a hyperactive CiaRH system, β-lactam resistance, and prevention of competence development, were far more pronounced in the laboratory mutants. Amino acid changes affecting CiaH function were positioned throughout the protein. Five of the most activating changes are located close to the conserved histidine and one in the extracytoplasmic sensor domain. The characterization of new alleles of ciaH expands the spectrum of CiaH variants, which may help to elucidate signal transduction of this important regulatory system. Our study also demonstrates that ciaH alleles overstimulating CiaR regulon expression are present in clinical isolates of S. pneumoniae.


2012 ◽  
Vol 78 (10) ◽  
pp. 3515-3522 ◽  
Author(s):  
Kari Helene Berg ◽  
Truls Johan Biørnstad ◽  
Ola Johnsborg ◽  
Leiv Sigve Håvarstein

ABSTRACTCompetence for natural genetic transformation is widespread in the genusStreptococcus. The current view is that all streptococcal species possess this property. In addition to the proteins required for DNA uptake and recombination, competent streptococci secrete muralytic enzymes termed fratricins. Since the synthesis and secretion of these cell wall-degrading enzymes are always coupled to competence development in streptococci, fratricins are believed to carry out an important function associated with natural transformation. This minireview summarizes what is known about the properties of fratricins and discusses their possible biological roles in streptococcal transformation.


Sign in / Sign up

Export Citation Format

Share Document