scholarly journals Roles of Alanine Dehydrogenase and Induction of Its Gene inMycobacterium smegmatisunder Respiration-Inhibitory Conditions

2018 ◽  
Vol 200 (14) ◽  
Author(s):  
Ji-A Jeong ◽  
Sae Woong Park ◽  
Dahae Yoon ◽  
Suhkmann Kim ◽  
Ho-Young Kang ◽  
...  

ABSTRACTHere we demonstrated that the inhibition of electron flux through the respiratory electron transport chain (ETC) by either the disruption of the gene for the major terminal oxidase (aa3cytochromecoxidase) or treatment with KCN resulted in the induction ofaldencoding alanine dehydrogenase inMycobacterium smegmatis. A decrease in functionality of the ETC shifts the redox state of the NADH/NAD+pool toward a more reduced state, which in turn leads to an increase in cellular levels of alanine by Ald catalyzing the conversion of pyruvate to alanine with the concomitant oxidation of NADH to NAD+. The induction ofaldexpression under respiration-inhibitory conditions inM. smegmatisis mediated by the alanine-responsive AldR transcriptional regulator. The growth defect ofM. smegmatisby respiration inhibition was exacerbated by inactivation of thealdgene, suggesting that Ald is beneficial toM. smegmatisin its adaptation and survival under respiration-inhibitory conditions by maintaining NADH/NAD+homeostasis. The low susceptibility ofM. smegmatistobcc1complex inhibitors appears to be, at least in part, attributable to the high expression level of thebdquinol oxidase inM. smegmatiswhen thebcc1-aa3branch of the ETC is inactivated.IMPORTANCEWe demonstrated that the functionality of the respiratory electron transport chain is inversely related to the expression level of thealdgene encoding alanine dehydrogenase inMycobacterium smegmatis. Furthermore, the importance of Ald in NADH/NAD+homeostasis during the adaptation ofM. smegmatisto severe respiration-inhibitory conditions was demonstrated in this study. On the basis of these results, we propose that combinatory regimens including both an Ald-specific inhibitor and respiration-inhibitory antitubercular drugs such as Q203 and bedaquiline are likely to enable a more efficient therapy for tuberculosis.

2017 ◽  
Vol 83 (18) ◽  
Author(s):  
Nikolas Duszenko ◽  
Nicole R. Buan

ABSTRACT Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli. We found the quantity of MPh per cell increases as cultures transition from exponential growth to stationary phase, and absolute quantities of MPh were 3-fold higher in M. acetivorans than in M. barkeri. The concentration of MPh suggests the cell membrane of M. acetivorans, but not of M. barkeri, is electrically quantized as if it were a single conductive metal sheet and near optimal for rate of electron transport. Similarly, stationary (but not exponentially growing) E. coli cells also have electrically quantized membranes on the basis of quinone content. Consistent with our hypothesis, we demonstrated that the exogenous addition of phenazine increases the growth rate of M. barkeri three times that of M. acetivorans. Our work suggests electron flux through MPh is naturally higher in M. acetivorans than in M. barkeri and that hydrogen cycling is less efficient at conserving energy than scalar proton translocation using MPh. IMPORTANCE Can we grow more from less? The ability to optimize and manipulate metabolic efficiency in cells is the difference between commercially viable and nonviable renewable technologies. Much can be learned from methane-producing archaea (methanogens) which evolved a successful metabolic lifestyle under extreme thermodynamic constraints. Methanogens use highly efficient electron transport systems and supramolecular complexes to optimize electron and carbon flow to control biomass synthesis and the production of methane. Worldwide, methanogens are used to generate renewable methane for heat, electricity, and transportation. Our observations suggest Methanosarcina acetivorans, but not Methanosarcina barkeri, has electrically quantized membranes. Escherichia coli, a model facultative anaerobe, has optimal electron transport at the stationary phase but not during exponential growth. This study also suggests the metabolic efficiency of bacteria and archaea can be improved using exogenously supplied lipophilic electron carriers. The enhancement of methanogen electron transport through methanophenazine has the potential to increase renewable methane production at an industrial scale.


2017 ◽  
Vol 199 (12) ◽  
Author(s):  
Eric D. Peng ◽  
Shelley M. Payne

ABSTRACT Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. V. cholerae thrives within the human host, where it replicates to high numbers, but it also persists within the aquatic environments of ocean and brackish water. To survive within these nutritionally diverse environments, V. cholerae must encode the necessary tools to acquire the essential nutrient iron in all forms it may encounter. A prior study of systems involved in iron transport in V. cholerae revealed the existence of vciB, which, while unable to directly transport iron, stimulates the transport of iron through ferrous (Fe2+) iron transport systems. We demonstrate here a role for VciB in V. cholerae in which VciB stimulates the reduction of Fe3+ to Fe2+, which can be subsequently transported into the cell with the ferrous iron transporter Feo. Iron reduction is independent of functional iron transport but is associated with the electron transport chain. Comparative analysis of VciB orthologs suggests a similar role for other proteins in the VciB family. Our data indicate that VciB is a dimer located in the inner membrane with three transmembrane segments and a large periplasmic loop. Directed mutagenesis of the protein reveals two highly conserved histidine residues required for function. Taken together, our results support a model whereby VciB reduces ferric iron using energy from the electron transport chain. IMPORTANCE Vibrio cholerae is a prolific human pathogen and environmental organism. The acquisition of essential nutrients such as iron is critical for replication, and V. cholerae encodes a number of mechanisms to use iron from diverse environments. Here, we describe the V. cholerae protein VciB that increases the reduction of oxidized ferric iron (Fe3+) to the ferrous form (Fe2+), thus promoting iron acquisition through ferrous iron transporters. Analysis of VciB orthologs in Burkholderia and Aeromonas spp. suggest that they have a similar activity, allowing a functional assignment for this previously uncharacterized protein family. This study builds upon our understanding of proteins known to mediate iron reduction in bacteria.


2014 ◽  
Vol 197 (5) ◽  
pp. 893-904 ◽  
Author(s):  
Thomas Kruse ◽  
Bram A. van de Pas ◽  
Ariane Atteia ◽  
Klaas Krab ◽  
Wilfred R. Hagen ◽  
...  

Desulfitobacterium dehalogenansis able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome ofDesulfitobacterium dehalogenansJW/IU-DC1Tconsists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterizedcprTKZEBACDgene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 35-35
Author(s):  
Zhenghao Chen ◽  
Gaspard Cretenet ◽  
Valeria Carnazzo ◽  
Gerritje J. W. van der Windt ◽  
Arnon P. Kater ◽  
...  

Alterations in expression of specifically BCL-XL and MCL-1 dictate sensitivity of CLL cells to the Bcl-2 specific inhibitor venetoclax (VEN). We and others have shown upregulation of these anti-apoptotic proteins by interaction of CLL cells with CD4+ T helper cells within their lymph node microenvironment (LN-ME) mediated by CD40 signalling. We also reported significant metabolic changes of LN-ME activated CLL cells but whether metabolic alterations can be linked to VEN resistance remains unclear. As VEN is increasingly used in early stages of CLL, better understanding and tools to circumvent VEN resistance are highly needed. We aim to reveal the metabolic adaption of CLL to CD40 signalling in connection with VEN resistance. After in vitro CD40 signalling stimulation of peripheral blood (PB) CLL cells, mitochondrial mass and glucose uptake were measured by flow cytometry, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured on Seahorse XF Analyser. The result demonstrated that CD40 stimulation enhances both oxidative phosphorylation (OXPHOS) and glycolysis. This was also confirmed by microarray and metabolomics analyses, as genes and metabolites involved in these two metabolic pathways are significantly upregulated by CD40 stimulation. To find out whether these pathways are linked to VEN resistance, PB CLL cells were treated with OXPHOS or glycolysis inhibitors during CD40 stimulation. Remarkably, OXPHOS inhibition by electron transport chain (ETC) inhibitors (rotenone, antimycin A and oligomycin) counteracted strongly for VEN resistance, while glycolysis inhibition by 2-Deoxy-D-glucose (2DG) did not. The three ETC inhibitors also attenuated CLL activation, ATP production and NAD levels. Interestingly, complex II inhibition of the ETC (TTFA and DMM) did not affect VEN resistance. Regarding BCL-2 family members induced by CD40 ligation, both MCL-1 and BCL-XL were downregulated by these ETC inhibitors. In addition, OXPHOS inhibition strongly elevates glycolysis, and vice versa, which illustrates a strong metabolic plasticity of CLL cells. To further investigate the cross-talk between CD40 signalling, VEN resistance and mitochondrial metabolism, the three main fuels of the TCA cycle were inhibited: pyruvate (by UK5099), glutamine (by DON) and fatty acids (by etomoxir). Even though the OCR and ECAR were slightly decreased by (combinations of) these fuel inhibitors, neither CD40 signalling nor VEN sensitivity was affected. Next, we inhibited PI3K by idelalisib, BTK by ibrutinib and mTOR by rapamycin, which are three downstream targets of CD40 signalling. The results showed that only rapamycin inhibited CD40 activation and metabolic activities, and none of the three inhibitors counteracts VEN resistance. Lastly, we investigated CD40 splicing and overall expression. Interestingly, CD40 stimulation has a huge impact on CD40 expression itself, and these changes were blocked by ETC inhibition. These data indicate that ETC inhibition affects CD40 signals to counteract VEN resistance, by directly affecting the expression of CD40 protein on the cell membrane. In conclusion, after CD40 stimulation, CLL cells become metabolically activated and highly flexible in the use of mitochondrial fuels. The enhanced OXPHOS but not glycolysis contributes to VEN resistance, while ETC inhibition reverses CLL VEN resistance by directly suppressing CD40 expression on CLL. These findings link CLL metabolism directly to CD40 transcription and signalling, which may contribute to clinical VEN resistance. Disclosures van der Windt: genmab: Current Employment. Kater:Abbvie: Research Funding; Roche: Research Funding; Celgene: Research Funding; Janssen: Research Funding; Genentech: Research Funding. Eldering:Genentech: Research Funding; Celgene: Research Funding; Janssen: Research Funding.


2018 ◽  
Vol 84 (9) ◽  
Author(s):  
E. J. Fleming ◽  
T. Woyke ◽  
R. A. Donatello ◽  
M. M. M. Kuypers ◽  
A. Sczyrba ◽  
...  

ABSTRACTLeptothrix ochraceais known for producing large volumes of iron oxyhydroxide sheaths that alter wetland biogeochemistry. For over a century, these delicate structures have fascinated microbiologists and geoscientists. BecauseL. ochraceastill resists long-termin vitroculture, the debate regarding its metabolic classification dates back to 1885. We developed a novel culturing technique forL. ochraceausingin situnatural waters and coupled this with single-cell genomics and nanoscale secondary-ion mass spectrophotometry (nanoSIMS) to probeL. ochracea's physiology. In microslide culturesL. ochraceadoubled every 5.7 h and had an absolute growth requirement for ferrous iron, the genomic capacity for iron oxidation, and a branched electron transport chain with cytochromes putatively involved in lithotrophic iron oxidation. Additionally, its genome encoded several electron transport chain proteins, including a molybdopterin alternative complex III (ACIII), a cytochromebdoxidase reductase, and several terminal oxidase genes.L. ochraceacontained two key autotrophic proteins in the Calvin-Benson-Bassham cycle, a form II ribulose bisphosphate carboxylase, and a phosphoribulose kinase.L. ochraceaalso assimilated bicarbonate, although calculations suggest that bicarbonate assimilation is a small fraction of its total carbon assimilation. Finally,L. ochracea's fundamental physiology is a hybrid of those of the chemolithotrophicGallionella-type iron-oxidizing bacteria and the sheathed, heterotrophic filamentous metal-oxidizing bacteria of theLeptothrix-Sphaerotilusgenera. This allowsL. ochraceato inhabit a unique niche within the neutrophilic iron seeps.IMPORTANCELeptothrix ochraceawas one of three groups of organisms that Sergei Winogradsky used in the 1880s to develop his hypothesis on chemolithotrophy.L. ochraceacontinues to resist cultivation and appears to have an absolute requirement for organic-rich waters, suggesting that its true physiology remains unknown. Further,L. ochraceais an ecological engineer; a fewL. ochraceacells can generate prodigious volumes of iron oxyhydroxides, changing the ecosystem's geochemistry and ecology. Therefore, to determineL. ochracea's basic physiology, we employed new single-cell techniques to demonstrate thatL. ochraceaoxidizes iron to generate energy and, despite having predicted genes for autotrophic growth, assimilates a fraction of the total CO2that autotrophs do. Although not a true chemolithoautotroph,L. ochracea's physiological strategy allows it to be flexible and to extensively colonize iron-rich wetlands.


2014 ◽  
Vol 83 (1) ◽  
pp. 430-440 ◽  
Author(s):  
E. M. Peterman ◽  
C. Sullivan ◽  
M. F. Goody ◽  
I. Rodriguez-Nunez ◽  
J. A. Yoder ◽  
...  

Mitochondria are known primarily as the location of the electron transport chain and energy production in cells. More recently, mitochondria have been shown to be signaling centers for apoptosis and inflammation. Reactive oxygen species (ROS) generated as by-products of the electron transport chain within mitochondria significantly impact cellular signaling pathways. Because of the toxic nature of ROS, mitochondria possess an antioxidant enzyme, superoxide dismutase 2 (SOD2), to neutralize ROS. If mitochondrial antioxidant enzymes are overwhelmed during severe infections, mitochondrial dysfunction can occur and lead to multiorgan failure or death.Pseudomonas aeruginosais an opportunistic pathogen that can infect immunocompromised patients. Infochemicals and exotoxins associated withP. aeruginosaare capable of causing mitochondrial dysfunction. In this work, we describe the roles of SOD2 and mitochondrial ROS regulation in the zebrafish innate immune response toP. aeruginosainfection.sod2is upregulated in mammalian macrophages and neutrophils in response to lipopolysaccharidein vitro, andsod2knockdown in zebrafish results in an increased bacterial burden. Further investigation revealed that phagocyte numbers are compromised in Sod2-deficient zebrafish. Addition of the mitochondrion-targeted ROS-scavenging chemical MitoTEMPO rescues neutrophil numbers and reduces the bacterial burden in Sod2-deficient zebrafish. Our work highlights the importance of mitochondrial ROS regulation by SOD2 in the context of innate immunity and supports the use of mitochondrion-targeted ROS scavengers as potential adjuvant therapies during severe infections.


2011 ◽  
Vol 55 (5) ◽  
pp. 2189-2196 ◽  
Author(s):  
Bruce D. McCollister ◽  
Matthew Hoffman ◽  
Maroof Husain ◽  
Andrés Vázquez-Torres

ABSTRACTOur investigations have identified a mechanism by which exogenous production of nitric oxide (NO) induces resistance of Gram-positive and -negative bacteria to aminoglycosides. An NO donor was found to protectSalmonellaspp. against structurally diverse classes of aminoglycosides of the 4,6-disubstituted 2-deoxystreptamine group. Likewise, NO generated enzymatically by inducible NO synthase of gamma interferon-primed macrophages protected intracellularSalmonellaagainst the cytotoxicity of gentamicin. NO levels that elicited protection against aminoglycosides repressedSalmonellarespiratory activity. NO nitrosylated terminal quinol cytochrome oxidases, without exerting long-lasting inhibition of NADH dehydrogenases of the electron transport chain. The NO-mediated repression of respiratory activity blocked both energy-dependent phases I and II of aminoglycoside uptake but not the initial electrostatic interaction of the drug with the bacterial cell envelope. As seen inSalmonella, the NO-dependent inhibition of the electron transport chain also afforded aminoglycoside resistance to the clinically important pathogensPseudomonas aeruginosaandStaphylococcus aureus. Together, these findings provide evidence for a model in which repression of aerobic respiration by NO fluxes associated with host inflammatory responses can reduce drug uptake, thus promoting resistance to several members of the aminoglycoside family in phylogenetically diverse bacteria.


Sign in / Sign up

Export Citation Format

Share Document