scholarly journals Switching Control of Expression of ptsG from the Mlc Regulon to the NagC Regulon

2008 ◽  
Vol 190 (13) ◽  
pp. 4677-4686 ◽  
Author(s):  
Samir El Qaidi ◽  
Jacqueline Plumbridge

ABSTRACT The Mlc and NagC transcriptional repressors bind to similar 23-bp operators. The sequences are weakly palindromic, with just four positions totally conserved. There is no cross regulation observed between the repressors in vivo, but there are no obvious bases which could be responsible for operator site discrimination. To investigate the basis for operator recognition and to try to understand what differentiates NagC sites from Mlc sites, we have undertaken mutagenesis experiments to convert ptsG from a gene regulated by Mlc into a gene regulated by NagC. There are two Mlc operators upstream of ptsG, and to switch ptsG to the NagC regulon, it was necessary to change two different characteristics of both operators. Firstly, we replaced the AT base pair at position +/−11 from the center of symmetry of the operators with a GC base pair. Secondly, we changed the sequence of the CG base pairs in the central region of the operator (positions −4 to +4 around the center of symmetry). Our results show that changes at either of these locations are sufficient to lose regulation by Mlc but that both types of changes in both operators are necessary to convert ptsG to a gene regulated by NagC. In addition, these experiments confirmed that two operators are necessary for regulation by NagC. We also show that regulation of ptsG by Mlc involves some cooperative binding of Mlc to the two operators.

2017 ◽  
Author(s):  
Andrew Dittmore ◽  
Sumitabha Brahmachari ◽  
Yasuhara Takagi ◽  
John F. Marko ◽  
Keir C. Neuman

We present a method of detecting sequence defects by supercoiling DNA with magnetic tweezers. The method is sensitive to a single mismatched base pair in a DNA sequence of several thousand base pairs. We systematically compare DNA molecules with 0 to 16 adjacent mismatches at 1 M monovalent salt and 3.5 pN force and show that, under these conditions, a single plectoneme forms and is stably pinned at the defect. We use these measurements to estimate the energy and degree of end-loop kinking at defects. From this, we calculate the relative probability of plectoneme pinning at the mismatch under physiologically relevant conditions. Based on this estimate, we propose that DNA supercoiling could contribute to mismatch and damage sensing in vivo.


1984 ◽  
Vol 4 (8) ◽  
pp. 1440-1448 ◽  
Author(s):  
M Johnston ◽  
R W Davis

The GAL1 and GAL10 genes of Saccharomyces cerevisiae are divergently transcribed, with 606 base pairs of DNA separating their transcription initiation sites. These two genes are stringently coregulated: their expression is induced ca. 1,000-fold in cells growing on galactose and is repressed by growth on glucose. The nucleotide sequence of the region of DNA between these genes and the precise sites of transcription initiation are presented here. The most notable feature of the nucleotide sequence of this region is a 108-base-pair guanine-plus-cytosine-rich stretch of DNA located approximately in the middle of the region between GAL1 and GAL10. Analysis of the effects of mutations that alter the region between these two genes, constructed in vitro or selected in vivo, suggest that these guanine-plus-cytosine-rich sequences are required for the expression of both genes. The region of DNA between GAL1 and GAL10 is sufficient for regulation of expression of these genes: fusion of the region to the yeast HIS3 gene places HIS3 under GAL control.


2005 ◽  
Vol 58 (12) ◽  
pp. 851 ◽  
Author(s):  
Philip Hendry ◽  
Maxine J. McCall ◽  
Trevor J. Lockett

The cleavage rates of RNA substrates by trans-acting, hammerhead ribozymes are controlled by interactions between helices I and II. The interactions are affected by the relative lengths of these two double helices and by unpaired nucleotides protruding beyond helix I, either in the substrate or the ribozyme strand. Maximum cleavage rates are observed for ribozyme–substrate complexes with three or more base pairs in helix II and six or less base pairs in helix I. However, for these helix combinations, rates fall sharply with unpaired nucleotides at the end of helix I. Cleavage rates by ribozymes with one or two base pairs in helix II increase as helix I is lengthened, and are unaffected by unpaired nucleotides on the end. Since miniribozymes, with one base pair in helix II, efficiently cleave long RNA transcripts under physiological conditions, they represent the optimal design for the simple hammerheads for application in vivo.


1984 ◽  
Vol 4 (8) ◽  
pp. 1440-1448
Author(s):  
M Johnston ◽  
R W Davis

The GAL1 and GAL10 genes of Saccharomyces cerevisiae are divergently transcribed, with 606 base pairs of DNA separating their transcription initiation sites. These two genes are stringently coregulated: their expression is induced ca. 1,000-fold in cells growing on galactose and is repressed by growth on glucose. The nucleotide sequence of the region of DNA between these genes and the precise sites of transcription initiation are presented here. The most notable feature of the nucleotide sequence of this region is a 108-base-pair guanine-plus-cytosine-rich stretch of DNA located approximately in the middle of the region between GAL1 and GAL10. Analysis of the effects of mutations that alter the region between these two genes, constructed in vitro or selected in vivo, suggest that these guanine-plus-cytosine-rich sequences are required for the expression of both genes. The region of DNA between GAL1 and GAL10 is sufficient for regulation of expression of these genes: fusion of the region to the yeast HIS3 gene places HIS3 under GAL control.


Genetics ◽  
1988 ◽  
Vol 118 (1) ◽  
pp. 21-29
Author(s):  
N Benson ◽  
P Sugiono ◽  
P Youderian

Abstract The critical operator determinants for lambda repressor recognition have been defined by analyzing the binding of wild-type repressor to a set of mutant operators in vivo. Base pair substitutions at six positions within the lambda operator half-site impair binding severely, and define these base pairs as critical for operator function. One mutant operator binds repressor better than the consensus operator, and is a superoperator. The model proposed by M. Lewis in 1983 for the binding of lambda repressor to its operator accurately predicts the observed operator requirements for binding in vivo, with several minor exceptions. The order of affinities of the six natural lambda operators has also been determined.


1994 ◽  
Vol 14 (3) ◽  
pp. 1709-1720 ◽  
Author(s):  
N B Pandey ◽  
A S Williams ◽  
J H Sun ◽  
V D Brown ◽  
U Bond ◽  
...  

Mammalian histone mRNAs end in a highly conserved stem-loop structure, with a six-base stem and a four-base loop. We have examined the effect of mutating the stem-loop on the expression of the histone mRNA in vivo by introducing the mutated histone genes into CHO cells by stable transfection. Point mutations have been introduced into the loop sequence and into the UA base pair at the top of the stem. Changing either the first or the third base of the conserved UYUN sequence in the loop to a purine greatly reduced expression, while changing both U's to purines abolished expression. A number of alterations in the stem sequence, including reversing the stem sequence, reversing the two base pairs at the base of the stem, or destroying the UA base pair at the top of the stem, also abolished expression. Changing the UA base pair to a CG or a UG base pair also reduced expression. The loss of expression is due to inefficient processing of the pre-mRNA, as judged by the efficiency of processing in vitro. Addition of a polyadenylation site or the wild-type histone processing signal downstream of a mutant stem-loop resulted in rescuing the processing of the mutant pre-histone mRNA. These results suggest that if the histone pre-mRNA is not rapidly processed, then it is degraded.


1994 ◽  
Vol 14 (3) ◽  
pp. 1709-1720
Author(s):  
N B Pandey ◽  
A S Williams ◽  
J H Sun ◽  
V D Brown ◽  
U Bond ◽  
...  

Mammalian histone mRNAs end in a highly conserved stem-loop structure, with a six-base stem and a four-base loop. We have examined the effect of mutating the stem-loop on the expression of the histone mRNA in vivo by introducing the mutated histone genes into CHO cells by stable transfection. Point mutations have been introduced into the loop sequence and into the UA base pair at the top of the stem. Changing either the first or the third base of the conserved UYUN sequence in the loop to a purine greatly reduced expression, while changing both U's to purines abolished expression. A number of alterations in the stem sequence, including reversing the stem sequence, reversing the two base pairs at the base of the stem, or destroying the UA base pair at the top of the stem, also abolished expression. Changing the UA base pair to a CG or a UG base pair also reduced expression. The loss of expression is due to inefficient processing of the pre-mRNA, as judged by the efficiency of processing in vitro. Addition of a polyadenylation site or the wild-type histone processing signal downstream of a mutant stem-loop resulted in rescuing the processing of the mutant pre-histone mRNA. These results suggest that if the histone pre-mRNA is not rapidly processed, then it is degraded.


1991 ◽  
Vol 66 (04) ◽  
pp. 500-504 ◽  
Author(s):  
H Peretz ◽  
U Seligsohn ◽  
E Zwang ◽  
B S Coller ◽  
P J Newman

SummarySevere Glanzmann's thrombasthenia is relatively frequent in Iraqi-Jews and Arabs residing in Israel. We have recently described the mutations responsible for the disease in Iraqi-Jews – an 11 base pair deletion in exon 12 of the glycoprotein IIIa gene, and in Arabs – a 13 base pair deletion at the AG acceptor splice site of exon 4 on the glycoprotein IIb gene. In this communication we show that the Iraqi-Jewish mutation can be identified directly by polymerase chain reaction and gel electrophoresis. With specially designed oligonucleotide primers encompassing the mutation site, an 80 base pair segment amplified in healthy controls was clearly distinguished from the 69 base pair segment produced in patients. Patients from 11 unrelated Iraqi-Jewish families had the same mutation. The Arab mutation was identified by first amplifying a DNA segment consisting of 312 base pairs in controls and of 299 base pairs in patients, and then digestion by a restriction enzyme Stu-1, which recognizes a site that is absent in the mutant gene. In controls the 312 bp segment was digested into 235 and 77 bp fragments, while in patients there was no change in the size of the amplified 299 bp segment. The mutation was found in patients from 3 out of 5 unrelated Arab families. Both Iraqi-Jewish and Arab mutations were detectable in DNA extracted from blood and urine samples. The described simple methods of identifying the mutations should be useful for detection of the numerous potential carriers among the affected kindreds and for prenatal diagnosis using DNA extracted from chorionic villi samples.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 927
Author(s):  
Sebas D. Pronk ◽  
Erik Schooten ◽  
Jurgen Heinen ◽  
Esra Helfrich ◽  
Sabrina Oliveira ◽  
...  

Antibody-drug conjugates (ADCs) are currently used for the targeted delivery of drugs to diseased cells, but intracellular drug delivery and therefore efficacy may be suboptimal because of the large size, slow internalization and ineffective intracellular trafficking of the antibody. Using a phage display method selecting internalizing phages only, we developed internalizing single domain antibodies (sdAbs) with high binding affinity to rat PDGFRβ, a receptor involved in different types of diseases. We demonstrate that these constructs have different characteristics with respect to internalization rates but all traffic to lysosomes. To compare their efficacy in targeted drug delivery, we conjugated the sdAbs to a cytotoxic drug. The conjugates showed improved cytotoxicity correlating to their internalization speed. The efficacy of the conjugates was inhibited in the presence of vacuolin-1, an inhibitor of lysosomal maturation, suggesting lysosomal trafficking is needed for efficient drug release. In conclusion, sdAb constructs with different internalization rates can be designed against the same target, and sdAbs with a high internalization rate induce more cell killing than sdAbs with a lower internalization rate in vitro. Even though the overall efficacy should also be tested in vivo, sdAbs are particularly interesting formats to be explored to obtain different internalization rates.


Sign in / Sign up

Export Citation Format

Share Document