scholarly journals Single Domain Antibodies as Carriers for Intracellular Drug Delivery: A Proof of Principle Study

Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 927
Author(s):  
Sebas D. Pronk ◽  
Erik Schooten ◽  
Jurgen Heinen ◽  
Esra Helfrich ◽  
Sabrina Oliveira ◽  
...  

Antibody-drug conjugates (ADCs) are currently used for the targeted delivery of drugs to diseased cells, but intracellular drug delivery and therefore efficacy may be suboptimal because of the large size, slow internalization and ineffective intracellular trafficking of the antibody. Using a phage display method selecting internalizing phages only, we developed internalizing single domain antibodies (sdAbs) with high binding affinity to rat PDGFRβ, a receptor involved in different types of diseases. We demonstrate that these constructs have different characteristics with respect to internalization rates but all traffic to lysosomes. To compare their efficacy in targeted drug delivery, we conjugated the sdAbs to a cytotoxic drug. The conjugates showed improved cytotoxicity correlating to their internalization speed. The efficacy of the conjugates was inhibited in the presence of vacuolin-1, an inhibitor of lysosomal maturation, suggesting lysosomal trafficking is needed for efficient drug release. In conclusion, sdAb constructs with different internalization rates can be designed against the same target, and sdAbs with a high internalization rate induce more cell killing than sdAbs with a lower internalization rate in vitro. Even though the overall efficacy should also be tested in vivo, sdAbs are particularly interesting formats to be explored to obtain different internalization rates.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1108
Author(s):  
Oana Craciunescu ◽  
Madalina Icriverzi ◽  
Paula Ecaterina Florian ◽  
Anca Roseanu ◽  
Mihaela Trif

Osteoarthritis (OA) is a degenerative joint disease. An objective of the nanomedicine and drug delivery systems field is to design suitable pharmaceutical nanocarriers with controllable properties for drug delivery and site-specific targeting, in order to achieve greater efficacy and minimal toxicity, compared to the conventional drugs. The aim of this review is to present recent data on natural bioactive compounds with anti-inflammatory properties and efficacy in the treatment of OA, their formulation in lipid nanostructured carriers, mainly liposomes, as controlled release systems and the possibility to be intra-articularly (IA) administered. The literature regarding glycosaminoglycans, proteins, polyphenols and their ability to modify the cell response and mechanisms of action in different models of inflammation are reviewed. The advantages and limits of using lipid nanoformulations as drug delivery systems in OA treatment and the suitable route of administration are also discussed. Liposomes containing glycosaminoglycans presented good biocompatibility, lack of immune system activation, targeted delivery of bioactive compounds to the site of action, protection and efficiency of the encapsulated material, and prolonged duration of action, being highly recommended as controlled delivery systems in OA therapy through IA administration. Lipid nanoformulations of polyphenols were tested both in vivo and in vitro models that mimic OA conditions after IA or other routes of administration, recommending their clinical application.


2019 ◽  
Author(s):  
Alena Rudkouskaya ◽  
Nattawut Sinsuebphon ◽  
Marien Ochoa ◽  
Joe E. Mazurkiewicz ◽  
Xavier Intes ◽  
...  

AbstractFollowing an ever-increased focus on personalized medicine, there is a continuing need to develop preclinical molecular imaging modalities to guide the development and optimization of targeted therapies. To date, non-invasive quantitative imaging modalities that can comprehensively assess simultaneous cellular drug delivery efficacy and therapeutic response are lacking. In this regard, Near-Infrared (NIR) Macroscopic Fluorescence Lifetime Förster Resonance Energy Transfer (MFLI-FRET) imaging offers a unique method to robustly quantify receptor-ligand engagement in vivo and subsequent intracellular internalization, which is critical to assess the delivery efficacy of targeted therapeutics. However, implementation of multiplexing optical imaging with FRET in vivo is challenging to achieve due to spectral crowding and cross-contamination. Herein, we report on a strategy that relies on a dark quencher that enables simultaneous assessment of receptor-ligand engagement and tumor metabolism in intact live mice. First, we establish that IRDye QC-1 (QC-1) is an effective NIR dark acceptor for the FRET-induced quenching of donor Alexa Fluor 700 (AF700) using in vitro NIR FLI microscopy and in vivo wide-field MFLI imaging. Second, we report on simultaneous in vivo imaging of the metabolic probe IRDye 800CW 2-deoxyglucose (2-DG) and MFLI-FRET imaging of NIR-labeled transferrin FRET pair (Tf-AF700/Tf-QC-1) uptake in tumors. Such multiplexed imaging revealed an inverse relationship between 2-DG uptake and Tf intracellular delivery, suggesting that 2-DG signal may predict the efficacy of intracellular targeted delivery. Overall, our methodology enables for the first time simultaneous non-invasive monitoring of intracellular drug delivery and metabolic response in preclinical studies.


Author(s):  
Upasana Yadav ◽  
Angshuman Ray Chowdhuri ◽  
Sumanta Kumar Sahu ◽  
Nuzhat Husain ◽  
Qamar Rehman

  Objective: In this study, we have made an attempt to the developed formulation of nanoparticles (NPs) of telmisartan (TLM) incorporated in carboxymethyl chitosan (CMCS) for the better drug delivery and enhanced bioavailability.Materials and Methods: The NPs size and morphology were investigated by high-resolution transmission electron microscopy and field emission scanning electron microscopy, respectively. The crystal structures and surface functional groups were analyzed using X-ray diffraction pattern, and Fourier transform infrared spectroscopy, respectively.Results: To increase the solubility of TLM by targeted delivery of the drug through polymeric NPs is an alternative efficient, option for increasing the solubility. TLM nanosuspension powders were successfully formulated for dissolution and bioavailability enhancement of the drug. We focused on evaluating the influence of particle size and crystalline state on the in vitro and in vivo performance of TLM.Conclusion: In summary, we have developed a new approach toward the delivery of poorly water-soluble drug TLM by CMCS NPs. The particles having a good drug loading content and drug encapsulation efficiency. The cytotoxicity of the synthesized NPs is also very less.


Author(s):  
Patricia MUNTEAN ◽  
Carmen SOCACIU ◽  
Mihai Adrian SOCACIU

Lipid nanoparticles are getting a growing scientific and technological interest, worldwide. Either Solid Lipid Nanoparticles (SLNs), Nanostructured Lipid Carriers (NLCs), Lipid Drug Conjugates (LDCs) or Polymer-Lipid Nanoparticles (PLNs) have been produced and investigated last years, being reccomended as emerging carrier systems for many food and biomedical applications. An overview of the last publications, mainly since 2017 is presented, underlying the most important methods and techniques used for their preparation (e.g. high shear homogenization in hot and cold conditions, ultrasound assisted melt emulsification) as well techniques applied for measuring the size, calorimetric properties, zeta-potential, etc. Most relevant data related to the use of food-grade ingredients and designed lipid nanoparticles as delivery systems for organic and inorganic bioactive molecules in food or packaging’s are presented. The major reason for this trend in food science is the aim to overcome problems associated with the low bioavailability of many lipophilic bioactive compounds which are claimed to bring benefits to human health (carotenoid or anthocyanin pigments, sterols, vitamins). Finally, the recent applications of different formulas of lipid nanoparticles as drug carriers for in vitro experiments or for in vivo therapy (oral, parenteral or transdermal formulas) are presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Jason A. Ellis ◽  
Matei Banu ◽  
Shaolie S. Hossain ◽  
Rajinder Singh-Moon ◽  
Sean D. Lavine ◽  
...  

Effective treatment for glioblastoma (GBM) will likely require targeted delivery of several specific pharmacological agents simultaneously. Intra-arterial (IA) delivery is one technique for targeting the tumor site with multiple agents. Although IA chemotherapy for glioblastoma (GBM) has been attempted since the 1950s, the predicted benefits remain unproven in clinical practice. This review focuses on innovative approaches to IA drug delivery in treating GBM. Guided by novel in vitro and in vivo optical measurements, newer pharmacokinetic models promise to better define the complex relationship between background cerebral blood flow and drug injection parameters. Advanced optical technologies and tracers, unique nanoparticles designs, new cellular targets, and rational drug formulations are continuously modifying the therapeutic landscape for GBM. Personalized treatment approaches are emerging; however, such tailored approaches will largely depend on effective drug delivery techniques and on the ability to simultaneously deliver multidrug regimens. These new paradigms for tumor-selective drug delivery herald dramatic improvements in the effectiveness of IA chemotherapy for GBM. Therefore, within this context of so-called “precision medicine,” the role of IA delivery for GBM is thoroughly reassessed.


2020 ◽  
Author(s):  
Andrew Tae-Jun Kwon ◽  
Kohta Mohri ◽  
Satoshi Takizawa ◽  
Takahiro Arakawa ◽  
Maiko Takahashi ◽  
...  

AbstractAntibody-drug conjugates offers many advantages as a drug delivery platform that allows for highly specific targeting of cell types and genes. Ideally, testing the efficacy of these systems requires two cell types to be different only in the gene targeted by the drug, with the rest of the cellular machinery unchanged, in order to minimize other potential differences from obscuring the effects of the drug. In this study, we created multiple variants of U87MG cells with targeted mutation in the TP53 gene using the CRISPR-Cas9 system, and determined that their major transcriptional differences stem from the loss of p53 function. Using the transcriptome data, we predicted which mutant clones would have less divergent phenotypes from the wild type and thereby serve as the best candidates to be used as drug delivery testing platforms. Further in vitro and in vivo assays of cell morphology, proliferation rate and target antigen-mediated uptake supported our predictions. Based on the combined analysis results, we successfully selected the best qualifying mutant clone. This study serves as proof-of-principle of the approach and paves the way for extending to additional cell types and target genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bjoern Traenkle ◽  
Philipp D. Kaiser ◽  
Stefania Pezzana ◽  
Jennifer Richardson ◽  
Marius Gramlich ◽  
...  

The advancement of new immunotherapies necessitates appropriate probes to monitor the presence and distribution of distinct immune cell populations. Considering the key role of CD4+ cells in regulating immunological processes, we generated novel single-domain antibodies [nanobodies (Nbs)] that specifically recognize human CD4. After in-depth analysis of their binding properties, recognized epitopes, and effects on T-cell proliferation, activation, and cytokine release, we selected CD4-specific Nbs that did not interfere with crucial T-cell processes in vitro and converted them into immune tracers for noninvasive molecular imaging. By optical imaging, we demonstrated the ability of a high-affinity CD4-Nb to specifically visualize CD4+ cells in vivo using a xenograft model. Furthermore, quantitative high-resolution immune positron emission tomography (immunoPET)/MR of a human CD4 knock-in mouse model showed rapid accumulation of 64Cu-radiolabeled CD4-Nb1 in CD4+ T cell-rich tissues. We propose that the CD4-Nbs presented here could serve as versatile probes for stratifying patients and monitoring individual immune responses during personalized immunotherapy in both cancer and inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document