scholarly journals Lipopolysaccharide transport involves long-range coupling between cytoplasmic and periplasmic domains of the LptB2FGC extractor

2020 ◽  
Author(s):  
Emily A. Lundstedt ◽  
Brent W. Simpson ◽  
Natividad Ruiz

The cell surface of the Gram-negative cell envelope contains lipopolysaccharide (LPS) molecules, which form a permeability barrier against hydrophobic antibiotics. The LPS transport (Lpt) machine composed of LptB2FGCADE forms a proteinaceous trans-envelope bridge that allows for the rapid and specific transport of newly synthesized LPS from the inner membrane (IM) to the outer membrane (OM). This transport is powered from the IM by the ATP-binding cassette transporter LptB2FGC. The ATP-driven cycling between closed- and open-dimer states of the ATPase LptB2 is coupled to the extraction of LPS by the transmembrane domains LptFG. However, the mechanism by which LPS moves from a substrate-binding cavity formed by LptFG at the IM to the first component of the periplasmic bridge, the periplasmic β-jellyroll domain of LptF, is poorly understood. To better understand how LptB2FGC functions in Escherichia coli, we searched for suppressors of a defective LptB variant. We found that defects in LptB2 can be suppressed by both structural modifications to the core oligosaccharide of LPS and changes in various regions of LptFG, including a periplasmic loop in LptF that connects the substrate-binding cavity in LptFG to the periplasmic β-jellyroll domain of LptF. These novel suppressors suggest that interactions between the core oligosaccharide of LPS and periplasmic regions in the transporter influence the rate of LPS extraction by LptB2FGC. Together, our genetic data reveal a path for the bi-directional coupling between LptB2 and LptFG that extends from the cytoplasm to the entrance to the periplasmic bridge of the transporter. IMPORTANCE Gram-negative bacteria are intrinsically resistant to many antibiotics due to the presence of lipopolysaccharide (LPS) at their cell surface. LPS is transported from its site of synthesis at the inner membrane to the outer membrane by the Lpt machine. Lpt proteins form a transporter that spans the entire envelope and is thought to function similarly to a PEZ candy dispenser. This trans-envelope machine is powered by the cytoplasmic LptB ATPase through a poorly understood mechanism. Using genetic analyses in Escherichia coli, we found that LPS transport involves long-ranging bi-directional coupling across cellular compartments between cytoplasmic LptB and periplasmic regions of the Lpt transporter. This knowledge could be exploited in developing antimicrobials that overcome the permeability barrier imposed by LPS.

2016 ◽  
Vol 198 (16) ◽  
pp. 2192-2203 ◽  
Author(s):  
Alessandra M. Martorana ◽  
Mattia Benedet ◽  
Elisa A. Maccagni ◽  
Paola Sperandeo ◽  
Riccardo Villa ◽  
...  

ABSTRACTThe assembly of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) requires the transenvelope Lpt (lipopolysaccharide transport) complex, made inEscherichia coliof seven essential proteins located in the inner membrane (IM) (LptBCFG), periplasm (LptA), and OM (LptDE). At the IM, LptBFG constitute an unusual ATP binding cassette (ABC) transporter, composed by the transmembrane LptFG proteins and the cytoplasmic LptB ATPase, which is thought to extract LPS from the IM and to provide the energy for its export across the periplasm to the cell surface. LptC is a small IM bitopic protein that binds to LptBFG and recruits LptA via its N- and C-terminal regions, and its role in LPS export is not completely understood. Here, we show that the expression level oflptBis a critical factor for suppressing lethality of deletions in the C-terminal region of LptC and the functioning of a hybrid Lpt machinery that carriesPa-LptC, the highly divergent LptC orthologue fromPseudomonas aeruginosa. We found that LptB overexpression stabilizes C-terminally truncated LptC mutant proteins, thereby allowing the formation of a sufficient amount of stable IM complexes to support growth. Moreover, the LptB level seems also critical for the assembly of IM complexes carryingPa-LptC which is otherwise defective in interactions with theE. coliLptFG components. Overall, our data suggest that LptB and LptC functionally interact and support a model whereby LptB plays a key role in the assembly of the Lpt machinery.IMPORTANCEThe asymmetric outer membrane (OM) of Gram-negative bacteria contains in its outer leaflet an unusual glycolipid, the lipopolysaccharide (LPS). LPS largely contributes to the peculiar permeability barrier properties of the OM that prevent the entry of many antibiotics, thus making Gram-negative pathogens difficult to treat. InEscherichia colithe LPS transporter (the Lpt machine) is made of seven essential proteins (LptABCDEFG) that form a transenvelope complex. Here, we show that increased expression of the membrane-associated ABC protein LptB can suppress defects of LptC, which participates in the formation of the periplasmic bridge. This reveals functional interactions between these two components and supports a role of LptB in the assembly of the Lpt machine.


2020 ◽  
Author(s):  
Jacqueline Grimm ◽  
Handuo Shi ◽  
Wei Wang ◽  
Angela M. Mitchell ◽  
Ned S. Wingreen ◽  
...  

AbstractThe outer membrane (OM) of Gram-negative bacteria is a selective permeability barrier that allows uptake of nutrients while simultaneously protecting the cell from harmful compounds. The basic pathways and molecular machinery responsible for transporting lipopolysaccharides (LPS), lipoproteins, and β-barrel proteins to the OM have been identified, but very little is known about phospholipid (PL) transport. To identify genes capable of affecting PL transport, we screened for genetic interactions with mlaA*, a mutant in which anterograde PL transport causes the inner membrane (IM) to shrink and eventually rupture; characterization of mlaA*-mediated lysis suggested that PL transport can occur via a high-flux, diffusive flow mechanism. We found that YhdP, an IM protein involved in maintaining the OM permeability barrier, modulates the rate of PL transport during mlaA*-mediated lysis. Deletion of yhdP from mlaA* reduced the rate of IM transport to the OM by 50%, slowing shrinkage of the IM and delaying lysis. As a result, the weakened OM of ΔydhP cells was further compromised and ruptured before the IM during mlaA*-mediated death. These findings demonstrate the existence of a high-flux, diffusive pathway for PL flow in Escherichia coli that is modulated by YhdP.Significance StatementThe outer membrane (OM) of Gram-negative bacteria serves as a barrier that protects cells from harmful chemical compounds, including many antibiotics. Understanding how bacteria build this barrier is an important step in engineering strategies to circumvent it. A long-standing mystery in the field is how phospholipids (PLs) are transported from the inner membrane (IM) to the OM. We previously discovered that a mutation in the gene mlaA causes rapid flow of PLs to the OM, eventually resulting in IM rupture. Here, we found that deletion of the gene yhdP delayed cell death in the mlaA mutant by slowing flow of PLs to the OM. These findings reveal a high-flux, diffusive pathway for PL transport in Gram-negative bacteria modulated by YhdP.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Randi L. Guest ◽  
Daniel Samé Guerra ◽  
Maria Wissler ◽  
Jacqueline Grimm ◽  
Thomas J. Silhavy

ABSTRACT Lipopolysaccharide (LPS) is an essential glycolipid present in the outer membrane (OM) of many Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell viability; too little LPS weakens the OM, while too much LPS is lethal. In Escherichia coli, this balance is maintained by the YciM/FtsH protease complex, which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here, we provide evidence that activity of the YciM/FtsH protease complex is inhibited by the essential protein YejM. Using strains in which LpxC activity is reduced, we show that yciM is epistatic to yejM, demonstrating that YejM acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies have shown that this toxicity can be suppressed by deleting lpp, which codes for a highly abundant OM lipoprotein. It was assumed that deletion of lpp restores lipid balance by increasing the number of acyl chains available for glycerophospholipid biosynthesis. We show that this is not the case. Rather, our data suggest that preventing attachment of lpp to the peptidoglycan sacculus allows excess LPS to be shed in vesicles. We propose that this loss of OM material allows continued transport of LPS to the OM, thus preventing lethal accumulation of LPS within the inner membrane. Overall, our data justify the commitment of three essential inner membrane proteins to avoid toxic over- or underproduction of LPS. IMPORTANCE Gram-negative bacteria are encapsulated by an outer membrane (OM) that is impermeable to large and hydrophobic molecules. As such, these bacteria are intrinsically resistant to several clinically relevant antibiotics. To better understand how the OM is established or maintained, we sought to clarify the function of the essential protein YejM in Escherichia coli. Here, we show that YejM inhibits activity of the YciM/FtsH protease complex, which regulates synthesis of the essential OM glycolipid lipopolysaccharide (LPS). Our data suggest that disrupting proper communication between LPS synthesis and transport to the OM leads to accumulation of LPS within the inner membrane (IM). The lethality associated with this event can be suppressed by increasing OM vesiculation. Our research has identified a completely novel signaling pathway that we propose coordinates LPS synthesis and transport.


2015 ◽  
Vol 291 (4) ◽  
pp. 1921-1932 ◽  
Author(s):  
Matthias Urfer ◽  
Jasmina Bogdanovic ◽  
Fabio Lo Monte ◽  
Kerstin Moehle ◽  
Katja Zerbe ◽  
...  

Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM.


1999 ◽  
Vol 43 (6) ◽  
pp. 1459-1462 ◽  
Author(s):  
Martti Vaara ◽  
Marjatta Nurminen

ABSTRACT The tight packing of six fatty acids in the lipid A constituent of lipopolysaccharide (LPS) has been proposed to contribute to the unusually low permeability of the outer membrane of gram-negative enteric bacteria to hydrophobic antibiotics. Here it is shown that theEscherichia coli msbB mutant, which elaborates defective, penta-acylated lipid A, is practically as resistant to a representative set of hydrophobic solutes (rifampin, fusidic acid, erythromycin, clindamycin, and azithromycin) as the parent-type control strain. The susceptibility index, i.e., the approximate ratio between the MIC for the msbB mutant and that for the parent-type control, was maximally 2.7-fold. In comparison, the rfa mutant defective in the deep core oligosaccharide part of LPS displayed indices ranging from 20 to 64. The lpxA and lpxD lipid A mutants had indices higher than 512. Furthermore, the msbBmutant was resistant to glycopeptides (vancomycin, teicoplanin), whereas the rfa, lpxA, and lpxDmutants were susceptible. The msbB htrB double mutant, which elaborates even-more-defective, partially tetra-acylated lipid A, was still less susceptible than the rfa mutant. These findings indicate that hexa-acylated lipid A is not a prerequisite for the normal function of the outer membrane permeability barrier.


Author(s):  
Jianli Wang ◽  
Wenjian Ma ◽  
Yu Fang ◽  
Hao Liang ◽  
Huiting Yang ◽  
...  

Gram-negative bacteria are intrinsically resistant to antibiotics due to the presence of the cell envelope, but mechanisms are still not fully understood. In this study, a series of mutants that lack one or more major components associated with the cell envelope were constructed from Escherichia coli K-12 W3110. WJW02 can only synthesize Kdo 2 -lipid A which lacks the core oligosaccharide portion of lipopolysaccharide. WJW04, WJW07 and WJW08 were constructed from WJW02 by deleting the gene clusters relevant to the biosynthesis of exopolysaccharide, flagella and fimbria, respectively. WJW09, WJW010 and WJW011 cells cannot synthesize exopolysaccharide, flagella and fimbria, respectively. Comparing to the wild type W3110, mutants WJW02, WJW04, WJW07 and WJW08 cells showed decreased resistance to more than 10 different antibacterial drugs, but not the mutants WJW09, WJW010 and WJW011. This indicates that the core oligosaccharide portion of lipopolysaccharide plays important roles on multiple antibiotic resistance in E. coli and the 1 st heptose in core oligosaccharide portion is critical. Furthermore, the removal of the core oligosaccharide of LPS leads to influences on cell wall morphology, cell phenotypes, porins, efflux systems, and the respond behaviors to antibiotic stimulation. The results demonstrated the important role of lipopolysaccharide on the antibiotic resistance of Gram-negative bacteria.


2017 ◽  
Vol 200 (2) ◽  
Author(s):  
Federica A. Falchi ◽  
Elisa A. Maccagni ◽  
Simone Puccio ◽  
Clelia Peano ◽  
Cristina De Castro ◽  
...  

ABSTRACTIn Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane (OM), preventing the entry of toxic molecules, such as detergents and antibiotics. LPS is transported from the inner membrane (IM) to the OM by the Lpt multiprotein machinery. Defects in LPS transport compromise LPS assembly at the OM and result in increased antibiotic sensitivity. LptA is a key component of the Lpt machine that interacts with the IM protein LptC and chaperones LPS through the periplasm. We report here the construction oflptA41, a quadruple mutant in four conserved amino acids potentially involved in LPS or LptC binding. Although viable, the mutant displays increased sensitivity to several antibiotics (bacitracin, rifampin, and novobiocin) and the detergent SDS, suggesting thatlptA41affects LPS transport. Indeed,lptA41is defective in Lpt complex assembly, and its lipid A carries modifications diagnostic of LPS transport defects. We also selected and characterized two phenotypic bacitracin-resistant suppressors oflptA41. One mutant, in which only bacitracin sensitivity is suppressed, harbors a small in-frame deletion inmlaA, which codes for an OM lipoprotein involved in maintaining OM asymmetry by reducing accumulation of phospholipids in the outer leaflet. The other mutant, in which bacitracin, rifampin, and SDS sensitivity is suppressed, harbors an additional amino acid substitution in LptA41 and a nonsense mutation inopgH, encoding a glycosyltransferase involved in periplasmic membrane-derived oligosaccharide synthesis. Characterization of the suppressor mutants highlights different strategies adopted by the cell to overcome OM defects caused by impaired LPS transport.IMPORTANCELipopolysaccharide (LPS) is the major constituent of the outer membrane (OM) of most Gram-negative bacteria, forming a barrier against antibiotics. LPS is synthesized at the inner membrane (IM), transported across the periplasm, and assembled at the OM by the multiprotein Lpt complex. LptA is the periplasmic component of the Lpt complex, which bridges IM and OM and ferries LPS across the periplasm. How the cell coordinates the processes involved in OM biogenesis is not completely understood. We generated a mutant partially defective inlptAthat exhibited increased sensitivity to antibiotics and selected for suppressors of the mutant. The analysis of two independent suppressors revealed different strategies adopted by the cell to overcome defects in LPS biogenesis.


2016 ◽  
Vol 198 (14) ◽  
pp. 1984-1992 ◽  
Author(s):  
Tara F. Mahoney ◽  
Dante P. Ricci ◽  
Thomas J. Silhavy

ABSTRACTThe biogenesis of the outer membrane (OM) ofEscherichia coliis a conserved and vital process. The assembly of integral β-barrel outer membrane proteins (OMPs), which represent a major component of the OM, depends on periplasmic chaperones and the heteropentameric β-barrel assembly machine (Bam complex) in the OM. However, not all OMPs are affected by null mutations in the same chaperones or nonessential Bam complex members, suggesting there are categories of substrates with divergent requirements for efficient assembly. We have previously demonstrated two classes of substrates, one comprising large, low-abundance, and difficult-to-assemble substrates that are heavily dependent on SurA and also Skp and FkpA, and the other comprising relatively simple and abundant substrates that are not as dependent on SurA but are strongly dependent on BamB for assembly. Here, we describe novel mutations inbamDthat lower levels of BamD 10-fold and >25-fold without altering the sequence of the mature protein. We utilized these mutations, as well as a previously characterized mutation that lowers wild-type BamA levels, to reveal a third class of substrates. These mutations preferentially cause a marked decrease in the levels of multimeric proteins. This susceptibility of multimers to lowered quantities of Bam machines in the cell may indicate that multiple Bam complexes are needed to efficiently assemble multimeric proteins into the OM.IMPORTANCEThe outer membrane (OM) of Gram-negative bacteria, such asEscherichia coli, serves as a selective permeability barrier that prevents the uptake of toxic molecules and antibiotics. Integral β-barrel proteins (OMPs) are assembled by the β-barrel assembly machine (Bam), components of which are conserved in mitochondria, chloroplasts, and all Gram-negative bacteria, including many clinically relevant pathogenic species. Bam is essential for OM biogenesis and accommodates a diverse array of client proteins; however, a mechanistic model that accounts for the selectivity and broad substrate range of Bam is lacking. Here, we show that the assembly of multimeric OMPs is more strongly affected than that of monomeric OMPs when essential Bam complex components are limiting, suggesting that multiple Bam complexes are needed to assemble multimeric proteins.


2015 ◽  
Vol 370 (1679) ◽  
pp. 20150029 ◽  
Author(s):  
Brent W. Simpson ◽  
Janine M. May ◽  
David J. Sherman ◽  
Daniel Kahne ◽  
Natividad Ruiz

The cell surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS). The network of charges and sugars provided by the dense packing of LPS molecules in the outer leaflet of the outer membrane interferes with the entry of hydrophobic compounds into the cell, including many antibiotics. In addition, LPS can be recognized by the immune system and plays a crucial role in many interactions between bacteria and their animal hosts. LPS is synthesized in the inner membrane of Gram-negative bacteria, so it must be transported across their cell envelope to assemble at the cell surface. Over the past two decades, much of the research on LPS biogenesis has focused on the discovery and understanding of Lpt, a multi-protein complex that spans the cell envelope and functions to transport LPS from the inner membrane to the outer membrane. This paper focuses on the early steps of the transport of LPS by the Lpt machinery: the extraction of LPS from the inner membrane. The accompanying paper (May JM, Sherman DJ, Simpson BW, Ruiz N, Kahne D. 2015 Phil. Trans. R. Soc. B 370 , 20150027. ( doi:10.1098/rstb.2015.0027 )) describes the subsequent steps as LPS travels through the periplasm and the outer membrane to its final destination at the cell surface.


2018 ◽  
Vol 115 (28) ◽  
pp. E6614-E6621 ◽  
Author(s):  
Anna Konovalova ◽  
Marcin Grabowicz ◽  
Carl J. Balibar ◽  
Juliana C. Malinverni ◽  
Ronald E. Painter ◽  
...  

The outer membrane (OM) of Gram-negative bacteria forms a robust permeability barrier that blocks entry of toxins and antibiotics. Most OM proteins (OMPs) assume a β-barrel fold, and some form aqueous channels for nutrient uptake and efflux of intracellular toxins. The Bam machine catalyzes rapid folding and assembly of OMPs. Fidelity of OMP biogenesis is monitored by the σE stress response. When OMP folding defects arise, the proteases DegS and RseP act sequentially to liberate σE into the cytosol, enabling it to activate transcription of the stress regulon. Here, we identify batimastat as a selective inhibitor of RseP that causes a lethal decrease in σE activity in Escherichia coli, and we further identify RseP mutants that are insensitive to inhibition and confer resistance. Remarkably, batimastat treatment allows the capture of elusive intermediates in the OMP biogenesis pathway and offers opportunities to better understand the underlying basis for σE essentiality.


Sign in / Sign up

Export Citation Format

Share Document