scholarly journals The inner membrane protein YhdP modulates the rate of anterograde phospholipid flow in Escherichia coli

2020 ◽  
Author(s):  
Jacqueline Grimm ◽  
Handuo Shi ◽  
Wei Wang ◽  
Angela M. Mitchell ◽  
Ned S. Wingreen ◽  
...  

AbstractThe outer membrane (OM) of Gram-negative bacteria is a selective permeability barrier that allows uptake of nutrients while simultaneously protecting the cell from harmful compounds. The basic pathways and molecular machinery responsible for transporting lipopolysaccharides (LPS), lipoproteins, and β-barrel proteins to the OM have been identified, but very little is known about phospholipid (PL) transport. To identify genes capable of affecting PL transport, we screened for genetic interactions with mlaA*, a mutant in which anterograde PL transport causes the inner membrane (IM) to shrink and eventually rupture; characterization of mlaA*-mediated lysis suggested that PL transport can occur via a high-flux, diffusive flow mechanism. We found that YhdP, an IM protein involved in maintaining the OM permeability barrier, modulates the rate of PL transport during mlaA*-mediated lysis. Deletion of yhdP from mlaA* reduced the rate of IM transport to the OM by 50%, slowing shrinkage of the IM and delaying lysis. As a result, the weakened OM of ΔydhP cells was further compromised and ruptured before the IM during mlaA*-mediated death. These findings demonstrate the existence of a high-flux, diffusive pathway for PL flow in Escherichia coli that is modulated by YhdP.Significance StatementThe outer membrane (OM) of Gram-negative bacteria serves as a barrier that protects cells from harmful chemical compounds, including many antibiotics. Understanding how bacteria build this barrier is an important step in engineering strategies to circumvent it. A long-standing mystery in the field is how phospholipids (PLs) are transported from the inner membrane (IM) to the OM. We previously discovered that a mutation in the gene mlaA causes rapid flow of PLs to the OM, eventually resulting in IM rupture. Here, we found that deletion of the gene yhdP delayed cell death in the mlaA mutant by slowing flow of PLs to the OM. These findings reveal a high-flux, diffusive pathway for PL transport in Gram-negative bacteria modulated by YhdP.

2020 ◽  
Vol 117 (43) ◽  
pp. 26907-26914 ◽  
Author(s):  
Jacqueline Grimm ◽  
Handuo Shi ◽  
Wei Wang ◽  
Angela M. Mitchell ◽  
Ned S. Wingreen ◽  
...  

The outer membrane (OM) of Gram-negative bacteria is a selective permeability barrier that allows uptake of nutrients while simultaneously protecting the cell from harmful compounds. The basic pathways and molecular machinery responsible for transporting lipopolysaccharides (LPS), lipoproteins, and β-barrel proteins to the OM have been identified, but very little is known about phospholipid (PL) transport. To identify genes capable of affecting PL transport, we screened for genetic interactions with mlaA*, a mutant in which anterograde PL transport causes the inner membrane (IM) to shrink and eventually rupture; characterization of mlaA*-mediated lysis suggested that PL transport can occur via a high-flux diffusive flow mechanism. We found that YhdP, an IM protein involved in maintaining the OM permeability barrier, modulates the rate of PL transport during mlaA*-mediated lysis. Deletion of yhdP from mlaA* reduced the rate of IM transport to the OM by 50%, slowing shrinkage of the IM and delaying lysis. As a result, the weakened OM of ∆yhdP cells was further compromised and ruptured before the IM during mlaA*-mediated death. These findings demonstrate the existence of a high-flux diffusive pathway for PL flow in Escherichia coli that is modulated by YhdP.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ryoji Miyazaki ◽  
Tetsuro Watanabe ◽  
Kohei Yoshitani ◽  
Yoshinori Akiyama

The outer membrane (OM) of gram-negative bacteria functions as a selective permeability barrier. Escherichia coli periplasmic Zn-metallopeptidase BepA contributes to the maintenance of OM integrity through its involvement in the biogenesis and degradation of LptD, a β-barrel protein component of the lipopolysaccharide translocon. BepA either promotes the maturation of LptD when it is on the normal assembly pathway (on-pathway) or degrades it when its assembly is compromised (off-pathway). BepA performs these functions probably on the β‐barrel assembly machinery (BAM) complex. However, how BepA recognizes and directs an immature LptD to different pathways remains unclear. Here, we explored the interactions among BepA, LptD, and the BAM complex. We found that the interaction of the BepA edge-strand located adjacent to the active site with LptD was crucial not only for proteolysis but also, unexpectedly, for assembly promotion of LptD. Site-directed crosslinking analyses indicated that the unstructured N-terminal half of the β-barrel-forming domain of an immature LptD contacts with the BepA edge-strand. Furthermore, the C-terminal region of the β-barrel-forming domain of the BepA-bound LptD intermediate interacted with a 'seam' strand of BamA, suggesting that BepA recognized LptD assembling on the BAM complex. Our findings provide important insights into the functional mechanism of BepA.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Randi L. Guest ◽  
Daniel Samé Guerra ◽  
Maria Wissler ◽  
Jacqueline Grimm ◽  
Thomas J. Silhavy

ABSTRACT Lipopolysaccharide (LPS) is an essential glycolipid present in the outer membrane (OM) of many Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell viability; too little LPS weakens the OM, while too much LPS is lethal. In Escherichia coli, this balance is maintained by the YciM/FtsH protease complex, which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here, we provide evidence that activity of the YciM/FtsH protease complex is inhibited by the essential protein YejM. Using strains in which LpxC activity is reduced, we show that yciM is epistatic to yejM, demonstrating that YejM acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies have shown that this toxicity can be suppressed by deleting lpp, which codes for a highly abundant OM lipoprotein. It was assumed that deletion of lpp restores lipid balance by increasing the number of acyl chains available for glycerophospholipid biosynthesis. We show that this is not the case. Rather, our data suggest that preventing attachment of lpp to the peptidoglycan sacculus allows excess LPS to be shed in vesicles. We propose that this loss of OM material allows continued transport of LPS to the OM, thus preventing lethal accumulation of LPS within the inner membrane. Overall, our data justify the commitment of three essential inner membrane proteins to avoid toxic over- or underproduction of LPS. IMPORTANCE Gram-negative bacteria are encapsulated by an outer membrane (OM) that is impermeable to large and hydrophobic molecules. As such, these bacteria are intrinsically resistant to several clinically relevant antibiotics. To better understand how the OM is established or maintained, we sought to clarify the function of the essential protein YejM in Escherichia coli. Here, we show that YejM inhibits activity of the YciM/FtsH protease complex, which regulates synthesis of the essential OM glycolipid lipopolysaccharide (LPS). Our data suggest that disrupting proper communication between LPS synthesis and transport to the OM leads to accumulation of LPS within the inner membrane (IM). The lethality associated with this event can be suppressed by increasing OM vesiculation. Our research has identified a completely novel signaling pathway that we propose coordinates LPS synthesis and transport.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Uma Gabale ◽  
Perla Arianna Peña Palomino ◽  
HyunAh Kim ◽  
Wenya Chen ◽  
Susanne Ressl

Abstract Recent recurrent outbreaks of Gram-negative bacteria show the critical need to target essential bacterial mechanisms to fight the increase of antibiotic resistance. Pathogenic Gram-negative bacteria have developed several strategies to protect themselves against the host immune response and antibiotics. One such strategy is to remodel the outer membrane where several genes are involved. yejM was discovered as an essential gene in E. coli and S. typhimurium that plays a critical role in their virulence by changing the outer membrane permeability. How the inner membrane protein YejM with its periplasmic domain changes membrane properties remains unknown. Despite overwhelming structural similarity between the periplasmic domains of two YejM homologues with hydrolases like arylsulfatases, no enzymatic activity has been previously reported for YejM. Our studies reveal an intact active site with bound metal ions in the structure of YejM periplasmic domain. Furthermore, we show that YejM has a phosphatase activity that is dependent on the presence of magnesium ions and is linked to its function of regulating outer membrane properties. Understanding the molecular mechanism by which YejM is involved in outer membrane remodeling will help to identify a new drug target in the fight against the increased antibiotic resistance.


2017 ◽  
Vol 200 (2) ◽  
Author(s):  
Federica A. Falchi ◽  
Elisa A. Maccagni ◽  
Simone Puccio ◽  
Clelia Peano ◽  
Cristina De Castro ◽  
...  

ABSTRACTIn Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane (OM), preventing the entry of toxic molecules, such as detergents and antibiotics. LPS is transported from the inner membrane (IM) to the OM by the Lpt multiprotein machinery. Defects in LPS transport compromise LPS assembly at the OM and result in increased antibiotic sensitivity. LptA is a key component of the Lpt machine that interacts with the IM protein LptC and chaperones LPS through the periplasm. We report here the construction oflptA41, a quadruple mutant in four conserved amino acids potentially involved in LPS or LptC binding. Although viable, the mutant displays increased sensitivity to several antibiotics (bacitracin, rifampin, and novobiocin) and the detergent SDS, suggesting thatlptA41affects LPS transport. Indeed,lptA41is defective in Lpt complex assembly, and its lipid A carries modifications diagnostic of LPS transport defects. We also selected and characterized two phenotypic bacitracin-resistant suppressors oflptA41. One mutant, in which only bacitracin sensitivity is suppressed, harbors a small in-frame deletion inmlaA, which codes for an OM lipoprotein involved in maintaining OM asymmetry by reducing accumulation of phospholipids in the outer leaflet. The other mutant, in which bacitracin, rifampin, and SDS sensitivity is suppressed, harbors an additional amino acid substitution in LptA41 and a nonsense mutation inopgH, encoding a glycosyltransferase involved in periplasmic membrane-derived oligosaccharide synthesis. Characterization of the suppressor mutants highlights different strategies adopted by the cell to overcome OM defects caused by impaired LPS transport.IMPORTANCELipopolysaccharide (LPS) is the major constituent of the outer membrane (OM) of most Gram-negative bacteria, forming a barrier against antibiotics. LPS is synthesized at the inner membrane (IM), transported across the periplasm, and assembled at the OM by the multiprotein Lpt complex. LptA is the periplasmic component of the Lpt complex, which bridges IM and OM and ferries LPS across the periplasm. How the cell coordinates the processes involved in OM biogenesis is not completely understood. We generated a mutant partially defective inlptAthat exhibited increased sensitivity to antibiotics and selected for suppressors of the mutant. The analysis of two independent suppressors revealed different strategies adopted by the cell to overcome defects in LPS biogenesis.


2016 ◽  
Vol 198 (14) ◽  
pp. 1984-1992 ◽  
Author(s):  
Tara F. Mahoney ◽  
Dante P. Ricci ◽  
Thomas J. Silhavy

ABSTRACTThe biogenesis of the outer membrane (OM) ofEscherichia coliis a conserved and vital process. The assembly of integral β-barrel outer membrane proteins (OMPs), which represent a major component of the OM, depends on periplasmic chaperones and the heteropentameric β-barrel assembly machine (Bam complex) in the OM. However, not all OMPs are affected by null mutations in the same chaperones or nonessential Bam complex members, suggesting there are categories of substrates with divergent requirements for efficient assembly. We have previously demonstrated two classes of substrates, one comprising large, low-abundance, and difficult-to-assemble substrates that are heavily dependent on SurA and also Skp and FkpA, and the other comprising relatively simple and abundant substrates that are not as dependent on SurA but are strongly dependent on BamB for assembly. Here, we describe novel mutations inbamDthat lower levels of BamD 10-fold and >25-fold without altering the sequence of the mature protein. We utilized these mutations, as well as a previously characterized mutation that lowers wild-type BamA levels, to reveal a third class of substrates. These mutations preferentially cause a marked decrease in the levels of multimeric proteins. This susceptibility of multimers to lowered quantities of Bam machines in the cell may indicate that multiple Bam complexes are needed to efficiently assemble multimeric proteins into the OM.IMPORTANCEThe outer membrane (OM) of Gram-negative bacteria, such asEscherichia coli, serves as a selective permeability barrier that prevents the uptake of toxic molecules and antibiotics. Integral β-barrel proteins (OMPs) are assembled by the β-barrel assembly machine (Bam), components of which are conserved in mitochondria, chloroplasts, and all Gram-negative bacteria, including many clinically relevant pathogenic species. Bam is essential for OM biogenesis and accommodates a diverse array of client proteins; however, a mechanistic model that accounts for the selectivity and broad substrate range of Bam is lacking. Here, we show that the assembly of multimeric OMPs is more strongly affected than that of monomeric OMPs when essential Bam complex components are limiting, suggesting that multiple Bam complexes are needed to assemble multimeric proteins.


2018 ◽  
Author(s):  
Cassandra Kamischke ◽  
Junping Fan ◽  
Julien Bergeron ◽  
Hemantha D. Kulasekara ◽  
Zachary D. Dalebroux ◽  
...  

ABSTRACTThe outer membrane (OM) of Gram-negative bacteria serves as a selective permeability barrier that allows entry of essential nutrients while excluding toxic compounds, including antibiotics. The OM is asymmetric and contains an outer leaflet of lipopolysaccharides (LPS) or lipooligosaccharides (LOS) and an inner leaflet of glycerophospholipids (GPL). We screenedAcinetobacter baumanniitransposon mutants and identified a number of mutants with OM defects, including an ABC transporter system homologous to the Mla system inE. coli. We further show that this opportunistic, antibiotic-resistant pathogen uses this multicomponent protein complex and ATP hydrolysis at the inner membrane to promote GPL export to the OM. The broad conservation of the Mla system in Gram-negative bacteria suggests the system may play a conserved role in OM biogenesis. The importance of the Mla system toAcinetobacter baumanniiOM integrity and antibiotic sensitivity suggests that its components may serve as new antimicrobial therapeutic targets.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Cassandra Kamischke ◽  
Junping Fan ◽  
Julien Bergeron ◽  
Hemantha D Kulasekara ◽  
Zachary D Dalebroux ◽  
...  

The outer membrane (OM) of Gram-negative bacteria serves as a selective permeability barrier that allows entry of essential nutrients while excluding toxic compounds, including antibiotics. The OM is asymmetric and contains an outer leaflet of lipopolysaccharides (LPS) or lipooligosaccharides (LOS) and an inner leaflet of glycerophospholipids (GPL). We screened Acinetobacter baumannii transposon mutants and identified a number of mutants with OM defects, including an ABC transporter system homologous to the Mla system in E. coli. We further show that this opportunistic, antibiotic-resistant pathogen uses this multicomponent protein complex and ATP hydrolysis at the inner membrane to promote GPL export to the OM. The broad conservation of the Mla system in Gram-negative bacteria suggests the system may play a conserved role in OM biogenesis. The importance of the Mla system to Acinetobacter baumannii OM integrity and antibiotic sensitivity suggests that its components may serve as new antimicrobial therapeutic targets.


2020 ◽  
Author(s):  
Emily A. Lundstedt ◽  
Brent W. Simpson ◽  
Natividad Ruiz

The cell surface of the Gram-negative cell envelope contains lipopolysaccharide (LPS) molecules, which form a permeability barrier against hydrophobic antibiotics. The LPS transport (Lpt) machine composed of LptB2FGCADE forms a proteinaceous trans-envelope bridge that allows for the rapid and specific transport of newly synthesized LPS from the inner membrane (IM) to the outer membrane (OM). This transport is powered from the IM by the ATP-binding cassette transporter LptB2FGC. The ATP-driven cycling between closed- and open-dimer states of the ATPase LptB2 is coupled to the extraction of LPS by the transmembrane domains LptFG. However, the mechanism by which LPS moves from a substrate-binding cavity formed by LptFG at the IM to the first component of the periplasmic bridge, the periplasmic β-jellyroll domain of LptF, is poorly understood. To better understand how LptB2FGC functions in Escherichia coli, we searched for suppressors of a defective LptB variant. We found that defects in LptB2 can be suppressed by both structural modifications to the core oligosaccharide of LPS and changes in various regions of LptFG, including a periplasmic loop in LptF that connects the substrate-binding cavity in LptFG to the periplasmic β-jellyroll domain of LptF. These novel suppressors suggest that interactions between the core oligosaccharide of LPS and periplasmic regions in the transporter influence the rate of LPS extraction by LptB2FGC. Together, our genetic data reveal a path for the bi-directional coupling between LptB2 and LptFG that extends from the cytoplasm to the entrance to the periplasmic bridge of the transporter. IMPORTANCE Gram-negative bacteria are intrinsically resistant to many antibiotics due to the presence of lipopolysaccharide (LPS) at their cell surface. LPS is transported from its site of synthesis at the inner membrane to the outer membrane by the Lpt machine. Lpt proteins form a transporter that spans the entire envelope and is thought to function similarly to a PEZ candy dispenser. This trans-envelope machine is powered by the cytoplasmic LptB ATPase through a poorly understood mechanism. Using genetic analyses in Escherichia coli, we found that LPS transport involves long-ranging bi-directional coupling across cellular compartments between cytoplasmic LptB and periplasmic regions of the Lpt transporter. This knowledge could be exploited in developing antimicrobials that overcome the permeability barrier imposed by LPS.


2021 ◽  
Author(s):  
Inokentijs Josts ◽  
Katharina Veith ◽  
Vincent Normant ◽  
Isabelle J. Schalk ◽  
Henning Tidow

AbstractGram-negative bacteria take up the essential ion Fe3+ as ferric-siderophore complexes through their outer membrane using TonB-dependent transporters. However, the subsequent route through the inner membrane differs across many bacterial species and siderophore chemistries and is not understood in detail. Here, we report the crystal structure of the inner membrane protein FoxB (from P. aeruginosa) that is involved in Fe-siderophore uptake. The structure revealed a novel fold with two tightly-bound heme molecules. In combination with functional studies these results establish FoxB as an inner membrane reductase involved in the release of iron from ferrioxamine during Fe-siderophore uptake.


Sign in / Sign up

Export Citation Format

Share Document