scholarly journals Molecular Basis for the Role of Staphylococcus aureus Penicillin Binding Protein 4 in Antimicrobial Resistance

2009 ◽  
Vol 192 (1) ◽  
pp. 134-144 ◽  
Author(s):  
Vikas Navratna ◽  
Savitha Nadig ◽  
Varun Sood ◽  
K. Prasad ◽  
Gayathri Arakere ◽  
...  

ABSTRACT Penicillin binding proteins (PBPs) are membrane-associated proteins that catalyze the final step of murein biosynthesis. These proteins function as either transpeptidases or carboxypeptidases and in a few cases demonstrate transglycosylase activity. Both transpeptidase and carboxypeptidase activities of PBPs occur at the d-Ala-d-Ala terminus of a murein precursor containing a disaccharide pentapeptide comprising N-acetylglucosamine and N-acetyl-muramic acid-l-Ala-d-Glu-l-Lys-d-Ala-d-Ala. β-Lactam antibiotics inhibit these enzymes by competing with the pentapeptide precursor for binding to the active site of the enzyme. Here we describe the crystal structure, biochemical characteristics, and expression profile of PBP4, a low-molecular-mass PBP from Staphylococcus aureus strain COL. The crystal structures of PBP4-antibiotic complexes reported here were determined by molecular replacement, using the atomic coordinates deposited by the New York Structural Genomics Consortium. While the pbp4 gene is not essential for the viability of S. aureus, the knockout phenotype of this gene is characterized by a marked reduction in cross-linked muropeptide and increased vancomycin resistance. Unlike other PBPs, we note that expression of PBP4 was not substantially altered under different experimental conditions, nor did it change across representative hospital- or community-associated strains of S. aureus that were examined. In vitro data on purified recombinant S. aureus PBP4 suggest that it is a β-lactamase and is not trapped as an acyl intermediate with β-lactam antibiotics. Put together, the expression analysis and biochemical features of PBP4 provide a framework for understanding the function of this protein in S. aureus and its role in antimicrobial resistance.

2016 ◽  
Vol 199 (1) ◽  
Author(s):  
Richard E. Wiemels ◽  
Stephanie M. Cech ◽  
Nikki M. Meyer ◽  
Caleb A. Burke ◽  
Andy Weiss ◽  
...  

ABSTRACT Staphylococcus aureus is an important human pathogen that relies on a large repertoire of secreted and cell wall-associated proteins for pathogenesis. Consequently, the ability of the organism to cause disease is absolutely dependent on its ability to synthesize and successfully secrete these proteins. In this study, we investigate the role of peptidyl-prolyl cis/trans isomerases (PPIases) on the activity of the S. aureus secreted virulence factor nuclease (Nuc). We identify a staphylococcal cyclophilin-type PPIase (PpiB) that is required for optimal activity of Nuc. Disruption of ppiB results in decreased nuclease activity in culture supernatants; however, the levels of Nuc protein are not altered, suggesting that the decrease in activity results from misfolding of Nuc in the absence of PpiB. We go on to demonstrate that PpiB exhibits PPIase activity in vitro, is localized to the bacterial cytosol, and directly interacts with Nuc in vitro to accelerate the rate of Nuc refolding. Finally, we demonstrate an additional role for PpiB in S. aureus hemolysis and demonstrate that the S. aureus parvulin-type PPIase PrsA also plays a role in the activity of secreted virulence factors. The deletion of prsA leads to a decrease in secreted protease and phospholipase activity, similar to that observed in other Gram-positive pathogens. Together, these results demonstrate, for the first time to our knowledge, that PPIases play an important role in the secretion of virulence factors in S. aureus. IMPORTANCE Staphylococcus aureus is a highly dangerous bacterial pathogen capable of causing a variety of infections throughout the human body. The ability of S. aureus to cause disease is largely due to an extensive repertoire of secreted and cell wall-associated proteins, including adhesins, toxins, exoenzymes, and superantigens. These virulence factors, once produced, are typically transported across the cell membrane by the secretory (Sec) system in a denatured state. Consequently, once outside the cell, they must refold into their active form. This step often requires the assistance of bacterial folding proteins, such as PPIases. In this work, we investigate the role of PPIases in S. aureus and uncover a cyclophilin-type enzyme that assists in the folding/refolding of staphylococcal nuclease.


1996 ◽  
Vol 40 (9) ◽  
pp. 2121-2125 ◽  
Author(s):  
U U Henze ◽  
B Berger-Bächi

The Staphylococcus aureus mutant strain PVI selected in vitro for methicillin resistance overexpressed penicillin-binding protein (PBP) 4. In the wild-type parent strain the pbp4 gene was separated by 419 nucleotides from a divergently transcribed abcA locus coding for an ATP-binding cassette transporter. The mutant PVI was shown to have a deletion in the pbp4-abcA promoter region that affected pbp4 transcription but not expression of abcA. Introduction of the pbp4 gene plus the mutant promoter region into different genetic backgrounds revealed that PBP 4 overproduction was sufficient to increase in vitro-acquired methicillin resistance independently of other chromosomal genes. The role of the AbcA transporter in methicillin resistance remained unknown.


Author(s):  
Jonathon A Ditlev

Abstract Liquid‒liquid phase separation (LLPS) of biomolecules has emerged as an important mechanism that contributes to cellular organization. Phase separated biomolecular condensates, or membrane-less organelles, are compartments composed of specific biomolecules without a surrounding membrane in the nucleus and cytoplasm. LLPS also occurs at membranes, where both lipids and membrane-associated proteins can de-mix to form phase separated compartments. Investigation of these membrane-associated condensates using in vitro biochemical reconstitution and cell biology has provided key insights into the role of phase separation in membrane domain formation and function. However, these studies have generally been limited by available technology to study LLPS on model membranes and the complex cellular environment that regulates condensate formation, composition, and function. Here, I briefly review our current understanding of membrane-associated condensates, establish why LLPS can be advantageous for certain membrane-associated condensates, and offer a perspective for how these condensates may be studied in the future.


2021 ◽  
pp. 1-9
Author(s):  
Etsuo Niki

Reactive oxygen and nitrogen species have been implicated in the onset and progression of various diseases and the role of antioxidants in the maintenance of health and prevention of diseases has received much attention. The action and effect of antioxidants have been studied extensively under different reaction conditions in multiple media. The antioxidant effects are determined by many factors. This review aims to discuss several important issues that should be considered for determination of experimental conditions and interpretation of experimental results in order to understand the beneficial effects and limit of antioxidants against detrimental oxidation of biological molecules. Emphasis was laid on cell culture experiments and effects of diversity of multiple oxidants on antioxidant efficacy.


2016 ◽  
Vol 44 (04) ◽  
pp. 803-815 ◽  
Author(s):  
Lin Bai ◽  
Guiying Shi ◽  
Yajun Yang ◽  
Wei Chen ◽  
Lianfeng Zhang

Anti-aging has always been a popular topic, and there are many claims about the existence of factors that can slow, stop, or even reverse the aging process. Siraitia grosuenorii, a local fruit in china, has been used for the treatment of gastritis, sore throats, and whooping cough in traditional Chinese medicine. The individuals who took the juice of Siraitia grosuenorii regularly had increased longevity in the Guangxi Province, which is located in the Southern part of China. In this paper, we fed mice with Siraitia grosuenorii for 10 months to identify the role of Siraitia grosuenorii in anti-aging and to investigate its corresponding mechanism. The results showed that mice fed with Siraitia grosuenorii displayed a slower aging process. The extension of the aging process was due to the enhanced function of HSCs. FACS analysis showed that the number of LSKs, LT-HSCs, ST-HSCs and MPPs from Siraitia grosuenorii mice was decreased. In vitro, a clonigenic assay showed that LT-HSCs from Siraitia grosuenorii mice increased the ability of self-renewal. Moreover, Siraitia grosuenorii mice maintained the quiescence of LSKs, decreased the level of ROS and reduced the amount of senescence associated β-gal positive cells. Furthermore, Siraitia grosuenorii mice decreased the expression of senescence-associated proteins. Siraitia grosuenorii maintained quiescence, decreased senescence and enhanced the function of HSCs, slowing the aging process of mice.


2004 ◽  
Vol 186 (6) ◽  
pp. 1705-1713 ◽  
Author(s):  
S. Gardete ◽  
A. M. Ludovice ◽  
R. G. Sobral ◽  
S. R. Filipe ◽  
H. de Lencastre ◽  
...  

ABSTRACT It was shown earlier that Tn551 inserted into the C-terminal region of murE of parental methicillin-resistant Staphylococcus aureus strain COL causes a drastic reduction in methicillin resistance, accompanied by accumulation of UDP-MurNAc dipeptide in the cell wall precursor pool and incorporation of these abnormal muropeptides into the peptidoglycan of the mutant. Methicillin resistance was recovered in a suppressor mutant. The murE gene of the same strain was then put under the control of the isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible promoter P spac . Bacteria grown in the presence of suboptimal concentrations of IPTG accumulated UDP-MurNAc dipeptide in the cell wall precursor pool. Both growth rates and methicillin resistance levels (but not resistance to other antibiotics) were a function of the IPTG concentration. Northern analysis showed a gradual increase in the transcription of murE and also in the transcription of pbpB and mecA, parallel with the increasing concentrations of IPTG in the medium. A similar increase in the transcription of pbpB and mecA, the structural genes of penicillin-binding protein 2 (PBP2) and PBP2A, was also detected in the suppressor mutant. The expression of these two proteins, which are known to play critical roles in the mechanism of staphylococcal methicillin resistance, appears to be—directly or indirectly—under the control of the murE gene. Our data suggest that the drastic reduction of the methicillin MIC seen in the murE mutant may be caused by the insufficient cellular amounts of these two PBPs.


1980 ◽  
Vol 239 (6) ◽  
pp. G536-G542
Author(s):  
R. Schiessel ◽  
A. Merhav ◽  
J. B. Matthews ◽  
L. A. Fleischer ◽  
A. Barzilai ◽  
...  

In in vitro bullfrog fundic mucosa inhibited with 10(-3) M metiamide and exposed to a luminal pH of 2 a progressive slow decline in potential difference (PD) and short-circuit current (Isc) and a rise in resistance (R) were observed when the nutrient solution (N) contained 18 mM HCO3(-), but these changes were restored by an N containing 50 mM HCO3(-). Substitution of PO4(3-) or N-tris(hydroxymethyl)-methyl-2-aminoethanesulfonic acid for NHO3(-) in N caused a rapid drop in PD and Isc in inhibited tissues, changes that could be prevented by 10(-4) M histamine. Ulceration occurred more frequently in metiamide-inhibited gastric sacs exposed to artificial gastric juice with an N of 18 mMHCO3(-) than with 50 mM HCO3(-), but histamine prevented ulceration in the 18 mM HCO3(-) solution. JnetCl approximated Isc under most experimental conditions in inhibited mucosa and was reduced dramatically as were both Jn leads to sCl and Js leads to nCl when HCO3(-) was removed from N. In histamine-stimulated tissues, removal of nutrient HCO3(-) did not influence Cl- transport. Our results are consistent with the proposal that HCO3(-) in N supports normal Cl- flux and that the alkaline tide of actively secreting oxyntic cells can do the same in the absence of ambient HCO3(-).


2019 ◽  
Vol 42 ◽  
pp. e45231
Author(s):  
Camila Lampugnani ◽  
Maike Taís Maziero Montanhini ◽  
Maria Emilene Martino Campos‐Galvão ◽  
Luis Augusto Nero ◽  
Luciano dos Santos Bersot

This study aimed to isolate Staphylococcus aureus in refrigerated raw cow milk, and identify the presence of enterotoxin-expression genes, enterotoxin production and adherence ability, and antimicrobial resistance potential of the isolated strains. Fifty raw milk samples obtained in different dairy farms were analyzed for S. aureus and evaluated in the isolates the presence of genes associated with the production of major staphylococcal enterotoxins and biofilm formation. In vitro assays were also performed to evaluate the production of enterotoxins and adherence ability, and the antimicrobial resistance. One half (25/50) of raw milk samples presented coagulase-positive staphylococci and 95.2% of the isolates were confirmed to be S. aureus. Among them, 42.4% were carrying genes for enterotoxins production; however, only one isolate was able to produce enterotoxins. All S. aureus isolates were carrying at least two genes associated with biofilm formation and 95.2% isolates was able to adhere upon the in vitro assay. All isolates demonstrated antimicrobial resistance potential to one or more of the tested antibiotics.


Sign in / Sign up

Export Citation Format

Share Document