scholarly journals Transposon Tn7 Directs Transposition into the Genome of Filamentous Bacteriophage M13 Using the Element-Encoded TnsE Protein

2007 ◽  
Vol 189 (24) ◽  
pp. 9122-9125 ◽  
Author(s):  
Jessica A. Finn ◽  
Adam R. Parks ◽  
Joseph E. Peters

ABSTRACT The bacterial transposon Tn7 has a pathway of transposition that preferentially targets conjugal plasmids. We propose that this same transposition pathway recognizes a structure or complex found during filamentous bacteriophage replication, likely by targeting negative-strand synthesis. The ability to insert into both plasmid and bacteriophage DNAs that are capable of cell-to-cell transfer would help explain the wide distribution of Tn7 relatives.

Cell Reports ◽  
2021 ◽  
Vol 35 (10) ◽  
pp. 109189
Author(s):  
Eleanna Kara ◽  
Alessandro Crimi ◽  
Anne Wiedmer ◽  
Marc Emmenegger ◽  
Claudia Manzoni ◽  
...  

2020 ◽  
Author(s):  
JVE Chan-Hyams ◽  
JN Copp ◽  
JB Smaill ◽  
AV Patterson ◽  
David Ackerley

© 2018 Elsevier Inc. Gene-directed enzyme-prodrug therapy (GDEPT) employs tumour-tropic vectors including viruses and bacteria to deliver a genetically-encoded prodrug-converting enzyme to the tumour environment, thereby sensitising the tumour to the prodrug. Nitroreductases, able to activate a range of promising nitroaromatic prodrugs to genotoxic metabolites, are of great interest for GDEPT. The bystander effect (cell-to-cell transfer of activated prodrug metabolites) has been quantified for some nitroaromatic prodrugs in mixed multilayer human cell cultures, however while these provide a good model for viral DEPT (VDEPT) they do not inform on the ability of these prodrug metabolites to exit bacterial vectors (relevant to bacterial-DEPT (BDEPT)). To investigate this we grew two Escherichia coli strains in co-culture; an activator strain expressing the nitroreductase E. coli NfsA and a recipient strain containing an SOS-GFP DNA damage responsive gene construct. In this system, induction of GFP by reduced prodrug metabolites can only occur following their transfer from the activator to the recipient cells. We used this to investigate five clinically relevant prodrugs: metronidazole, CB1954, nitro-CBI-DEI, and two dinitrobenzamide mustard prodrug analogues, PR-104A and SN27686. Consistent with the bystander efficiencies previously measured in human cell multilayers, reduced metronidazole exhibited little bacterial cell-to-cell transfer, whereas nitro-CBI-DEI was passed very efficiently from activator to recipient cells post-reduction. However, in contrast with observations in human cell multilayers, the nitrogen mustard prodrug metabolites were not effectively passed between the two bacterial strains, whereas reduced CB1954 was transferred efficiently. Using nitroreductase enzymes that exhibit different biases for the 2- versus 4-nitro substituents of CB1954, we further showed that the 2-nitro reduction products exhibit substantially higher levels of bacterial cell-to-cell transfer than the 4-nitro reduction products, consistent with their relative bystander efficiencies in human cell culture. Overall, our data suggest that prodrugs may differ in their suitability for VDEPT versus BDEPT applications and emphasise the importance of evaluating an enzyme-prodrug partnership in an appropriate context for the intended vector.


Retrovirology ◽  
2008 ◽  
Vol 5 (1) ◽  
pp. 31 ◽  
Author(s):  
Ahidjo Ayouba ◽  
Claude Cannou ◽  
Marie-Thérèse Nugeyre ◽  
Françoise Barré-Sinoussi ◽  
Elisabeth Menu

2005 ◽  
Vol 568 (2) ◽  
pp. 459-468 ◽  
Author(s):  
V. Valiunas ◽  
Y. Y. Polosina ◽  
H. Miller ◽  
I. A. Potapova ◽  
L. Valiuniene ◽  
...  

2011 ◽  
Vol 90 (2) ◽  
pp. A51
Author(s):  
Marc Permanyer ◽  
Ester Ballana ◽  
José A. Esté

2012 ◽  
Vol 428 (4) ◽  
pp. 445-450 ◽  
Author(s):  
Ayako Matsuda ◽  
Naomi Kurono ◽  
Chinatsu Kawano ◽  
Kozue Shirota ◽  
Akiko Hirabayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document